| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
|
| 2 |
|
omndmul.1 |
|
| 3 |
|
omndmul.2 |
|
| 4 |
|
omndmul.o |
|
| 5 |
|
omndmul.c |
|
| 6 |
|
omndmul.x |
|
| 7 |
|
omndmul.y |
|
| 8 |
|
omndmul.n |
|
| 9 |
|
omndmul.l |
|
| 10 |
|
oveq1 |
|
| 11 |
|
oveq1 |
|
| 12 |
10 11
|
breq12d |
|
| 13 |
|
oveq1 |
|
| 14 |
|
oveq1 |
|
| 15 |
13 14
|
breq12d |
|
| 16 |
|
oveq1 |
|
| 17 |
|
oveq1 |
|
| 18 |
16 17
|
breq12d |
|
| 19 |
|
oveq1 |
|
| 20 |
|
oveq1 |
|
| 21 |
19 20
|
breq12d |
|
| 22 |
|
omndtos |
|
| 23 |
|
tospos |
|
| 24 |
4 22 23
|
3syl |
|
| 25 |
|
eqid |
|
| 26 |
1 25 3
|
mulg0 |
|
| 27 |
7 26
|
syl |
|
| 28 |
|
omndmnd |
|
| 29 |
1 25
|
mndidcl |
|
| 30 |
4 28 29
|
3syl |
|
| 31 |
27 30
|
eqeltrd |
|
| 32 |
1 2
|
posref |
|
| 33 |
24 31 32
|
syl2anc |
|
| 34 |
1 25 3
|
mulg0 |
|
| 35 |
34
|
adantr |
|
| 36 |
26
|
adantl |
|
| 37 |
35 36
|
eqtr4d |
|
| 38 |
37
|
breq1d |
|
| 39 |
6 7 38
|
syl2anc |
|
| 40 |
33 39
|
mpbird |
|
| 41 |
|
eqid |
|
| 42 |
4
|
ad2antrr |
|
| 43 |
7
|
ad2antrr |
|
| 44 |
42 28
|
syl |
|
| 45 |
|
simplr |
|
| 46 |
6
|
ad2antrr |
|
| 47 |
1 3 44 45 46
|
mulgnn0cld |
|
| 48 |
1 3 44 45 43
|
mulgnn0cld |
|
| 49 |
|
simpr |
|
| 50 |
9
|
ad2antrr |
|
| 51 |
5
|
ad2antrr |
|
| 52 |
1 2 41 42 43 47 46 48 49 50 51
|
omndadd2d |
|
| 53 |
1 3 41
|
mulgnn0p1 |
|
| 54 |
44 45 46 53
|
syl3anc |
|
| 55 |
1 3 41
|
mulgnn0p1 |
|
| 56 |
44 45 43 55
|
syl3anc |
|
| 57 |
52 54 56
|
3brtr4d |
|
| 58 |
12 15 18 21 40 57
|
nn0indd |
|
| 59 |
8 58
|
mpdan |
|