| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
| 2 |
|
omndmul.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
| 3 |
|
omndmul.2 |
⊢ · = ( .g ‘ 𝑀 ) |
| 4 |
|
omndmul.o |
⊢ ( 𝜑 → 𝑀 ∈ oMnd ) |
| 5 |
|
omndmul.c |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
| 6 |
|
omndmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 7 |
|
omndmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 8 |
|
omndmul.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 9 |
|
omndmul.l |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
| 10 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑋 ) = ( 0 · 𝑋 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑌 ) = ( 0 · 𝑌 ) ) |
| 12 |
10 11
|
breq12d |
⊢ ( 𝑚 = 0 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) |
| 14 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑌 ) = ( 𝑛 · 𝑌 ) ) |
| 15 |
13 14
|
breq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑌 ) = ( ( 𝑛 + 1 ) · 𝑌 ) ) |
| 18 |
16 17
|
breq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( ( 𝑛 + 1 ) · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑌 ) ) ) |
| 19 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
| 20 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑌 ) = ( 𝑁 · 𝑌 ) ) |
| 21 |
19 20
|
breq12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) ) |
| 22 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
| 23 |
|
tospos |
⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) |
| 24 |
4 22 23
|
3syl |
⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
| 25 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
| 26 |
1 25 3
|
mulg0 |
⊢ ( 𝑌 ∈ 𝐵 → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
| 27 |
7 26
|
syl |
⊢ ( 𝜑 → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
| 28 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
| 29 |
1 25
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 30 |
4 28 29
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
| 31 |
27 30
|
eqeltrd |
⊢ ( 𝜑 → ( 0 · 𝑌 ) ∈ 𝐵 ) |
| 32 |
1 2
|
posref |
⊢ ( ( 𝑀 ∈ Poset ∧ ( 0 · 𝑌 ) ∈ 𝐵 ) → ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) |
| 33 |
24 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) |
| 34 |
1 25 3
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
| 35 |
34
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
| 36 |
26
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
| 37 |
35 36
|
eqtr4d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0 · 𝑌 ) ) |
| 38 |
37
|
breq1d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ↔ ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) ) |
| 39 |
6 7 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ↔ ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) ) |
| 40 |
33 39
|
mpbird |
⊢ ( 𝜑 → ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ) |
| 41 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
| 42 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ oMnd ) |
| 43 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
| 44 |
42 28
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ Mnd ) |
| 45 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑛 ∈ ℕ0 ) |
| 46 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
| 47 |
1 3 44 45 46
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 48 |
1 3 44 45 43
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑌 ) ∈ 𝐵 ) |
| 49 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) |
| 50 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
| 51 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ CMnd ) |
| 52 |
1 2 41 42 43 47 46 48 49 50 51
|
omndadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ≤ ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
| 53 |
1 3 41
|
mulgnn0p1 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
| 54 |
44 45 46 53
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
| 55 |
1 3 41
|
mulgnn0p1 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · 𝑌 ) = ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
| 56 |
44 45 43 55
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑌 ) = ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
| 57 |
52 54 56
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑌 ) ) |
| 58 |
12 15 18 21 40 57
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) |
| 59 |
8 58
|
mpdan |
⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) |