Step |
Hyp |
Ref |
Expression |
1 |
|
omndmul.0 |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
omndmul.1 |
⊢ ≤ = ( le ‘ 𝑀 ) |
3 |
|
omndmul.2 |
⊢ · = ( .g ‘ 𝑀 ) |
4 |
|
omndmul.o |
⊢ ( 𝜑 → 𝑀 ∈ oMnd ) |
5 |
|
omndmul.c |
⊢ ( 𝜑 → 𝑀 ∈ CMnd ) |
6 |
|
omndmul.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
7 |
|
omndmul.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
8 |
|
omndmul.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
9 |
|
omndmul.l |
⊢ ( 𝜑 → 𝑋 ≤ 𝑌 ) |
10 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑋 ) = ( 0 · 𝑋 ) ) |
11 |
|
oveq1 |
⊢ ( 𝑚 = 0 → ( 𝑚 · 𝑌 ) = ( 0 · 𝑌 ) ) |
12 |
10 11
|
breq12d |
⊢ ( 𝑚 = 0 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑋 ) = ( 𝑛 · 𝑋 ) ) |
14 |
|
oveq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 · 𝑌 ) = ( 𝑛 · 𝑌 ) ) |
15 |
13 14
|
breq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑋 ) = ( ( 𝑛 + 1 ) · 𝑋 ) ) |
17 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( 𝑚 · 𝑌 ) = ( ( 𝑛 + 1 ) · 𝑌 ) ) |
18 |
16 17
|
breq12d |
⊢ ( 𝑚 = ( 𝑛 + 1 ) → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( ( 𝑛 + 1 ) · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑌 ) ) ) |
19 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑋 ) = ( 𝑁 · 𝑋 ) ) |
20 |
|
oveq1 |
⊢ ( 𝑚 = 𝑁 → ( 𝑚 · 𝑌 ) = ( 𝑁 · 𝑌 ) ) |
21 |
19 20
|
breq12d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝑚 · 𝑋 ) ≤ ( 𝑚 · 𝑌 ) ↔ ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) ) |
22 |
|
omndtos |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Toset ) |
23 |
|
tospos |
⊢ ( 𝑀 ∈ Toset → 𝑀 ∈ Poset ) |
24 |
4 22 23
|
3syl |
⊢ ( 𝜑 → 𝑀 ∈ Poset ) |
25 |
|
eqid |
⊢ ( 0g ‘ 𝑀 ) = ( 0g ‘ 𝑀 ) |
26 |
1 25 3
|
mulg0 |
⊢ ( 𝑌 ∈ 𝐵 → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
27 |
7 26
|
syl |
⊢ ( 𝜑 → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
28 |
|
omndmnd |
⊢ ( 𝑀 ∈ oMnd → 𝑀 ∈ Mnd ) |
29 |
1 25
|
mndidcl |
⊢ ( 𝑀 ∈ Mnd → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
30 |
4 28 29
|
3syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑀 ) ∈ 𝐵 ) |
31 |
27 30
|
eqeltrd |
⊢ ( 𝜑 → ( 0 · 𝑌 ) ∈ 𝐵 ) |
32 |
1 2
|
posref |
⊢ ( ( 𝑀 ∈ Poset ∧ ( 0 · 𝑌 ) ∈ 𝐵 ) → ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) |
33 |
24 31 32
|
syl2anc |
⊢ ( 𝜑 → ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) |
34 |
1 25 3
|
mulg0 |
⊢ ( 𝑋 ∈ 𝐵 → ( 0 · 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
35 |
34
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0g ‘ 𝑀 ) ) |
36 |
26
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑌 ) = ( 0g ‘ 𝑀 ) ) |
37 |
35 36
|
eqtr4d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( 0 · 𝑋 ) = ( 0 · 𝑌 ) ) |
38 |
37
|
breq1d |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ↔ ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) ) |
39 |
6 7 38
|
syl2anc |
⊢ ( 𝜑 → ( ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ↔ ( 0 · 𝑌 ) ≤ ( 0 · 𝑌 ) ) ) |
40 |
33 39
|
mpbird |
⊢ ( 𝜑 → ( 0 · 𝑋 ) ≤ ( 0 · 𝑌 ) ) |
41 |
|
eqid |
⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) |
42 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ oMnd ) |
43 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑌 ∈ 𝐵 ) |
44 |
42 28
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ Mnd ) |
45 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑛 ∈ ℕ0 ) |
46 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑋 ∈ 𝐵 ) |
47 |
1 3
|
mulgnn0cl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
48 |
44 45 46 47
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
49 |
1 3
|
mulgnn0cl |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑛 · 𝑌 ) ∈ 𝐵 ) |
50 |
44 45 43 49
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑌 ) ∈ 𝐵 ) |
51 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) |
52 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑋 ≤ 𝑌 ) |
53 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → 𝑀 ∈ CMnd ) |
54 |
1 2 41 42 43 48 46 50 51 52 53
|
omndadd2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ≤ ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
55 |
1 3 41
|
mulgnn0p1 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
56 |
44 45 46 55
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) = ( ( 𝑛 · 𝑋 ) ( +g ‘ 𝑀 ) 𝑋 ) ) |
57 |
1 3 41
|
mulgnn0p1 |
⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑛 ∈ ℕ0 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑛 + 1 ) · 𝑌 ) = ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
58 |
44 45 43 57
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑌 ) = ( ( 𝑛 · 𝑌 ) ( +g ‘ 𝑀 ) 𝑌 ) ) |
59 |
54 56 58
|
3brtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑛 · 𝑋 ) ≤ ( 𝑛 · 𝑌 ) ) → ( ( 𝑛 + 1 ) · 𝑋 ) ≤ ( ( 𝑛 + 1 ) · 𝑌 ) ) |
60 |
12 15 18 21 40 59
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) |
61 |
8 60
|
mpdan |
⊢ ( 𝜑 → ( 𝑁 · 𝑋 ) ≤ ( 𝑁 · 𝑌 ) ) |