| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
|- B = ( Base ` M ) |
| 2 |
|
omndmul.1 |
|- .<_ = ( le ` M ) |
| 3 |
|
omndmul2.2 |
|- .x. = ( .g ` M ) |
| 4 |
|
omndmul2.3 |
|- .0. = ( 0g ` M ) |
| 5 |
|
df-3an |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) /\ .0. .<_ X ) ) |
| 6 |
|
anass |
|- ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) <-> ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) ) |
| 7 |
6
|
anbi1i |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) /\ .0. .<_ X ) ) |
| 8 |
5 7
|
bitr4i |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) ) |
| 9 |
|
simplr |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> N e. NN0 ) |
| 10 |
|
oveq1 |
|- ( m = 0 -> ( m .x. X ) = ( 0 .x. X ) ) |
| 11 |
10
|
breq2d |
|- ( m = 0 -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( 0 .x. X ) ) ) |
| 12 |
|
oveq1 |
|- ( m = n -> ( m .x. X ) = ( n .x. X ) ) |
| 13 |
12
|
breq2d |
|- ( m = n -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( n .x. X ) ) ) |
| 14 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m .x. X ) = ( ( n + 1 ) .x. X ) ) |
| 15 |
14
|
breq2d |
|- ( m = ( n + 1 ) -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( ( n + 1 ) .x. X ) ) ) |
| 16 |
|
oveq1 |
|- ( m = N -> ( m .x. X ) = ( N .x. X ) ) |
| 17 |
16
|
breq2d |
|- ( m = N -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( N .x. X ) ) ) |
| 18 |
|
omndtos |
|- ( M e. oMnd -> M e. Toset ) |
| 19 |
|
tospos |
|- ( M e. Toset -> M e. Poset ) |
| 20 |
18 19
|
syl |
|- ( M e. oMnd -> M e. Poset ) |
| 21 |
|
omndmnd |
|- ( M e. oMnd -> M e. Mnd ) |
| 22 |
1 4
|
mndidcl |
|- ( M e. Mnd -> .0. e. B ) |
| 23 |
21 22
|
syl |
|- ( M e. oMnd -> .0. e. B ) |
| 24 |
1 2
|
posref |
|- ( ( M e. Poset /\ .0. e. B ) -> .0. .<_ .0. ) |
| 25 |
20 23 24
|
syl2anc |
|- ( M e. oMnd -> .0. .<_ .0. ) |
| 26 |
25
|
ad3antrrr |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ .0. ) |
| 27 |
1 4 3
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = .0. ) |
| 28 |
27
|
ad3antlr |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> ( 0 .x. X ) = .0. ) |
| 29 |
26 28
|
breqtrrd |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( 0 .x. X ) ) |
| 30 |
20
|
ad5antr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> M e. Poset ) |
| 31 |
21
|
ad5antr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> M e. Mnd ) |
| 32 |
31 22
|
syl |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. e. B ) |
| 33 |
|
simplr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> n e. NN0 ) |
| 34 |
|
simp-5r |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> X e. B ) |
| 35 |
1 3 31 33 34
|
mulgnn0cld |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n .x. X ) e. B ) |
| 36 |
|
simpr32 |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> n e. NN0 ) |
| 37 |
|
1nn0 |
|- 1 e. NN0 |
| 38 |
37
|
a1i |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> 1 e. NN0 ) |
| 39 |
36 38
|
nn0addcld |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> ( n + 1 ) e. NN0 ) |
| 40 |
39
|
3anassrs |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) -> ( n + 1 ) e. NN0 ) |
| 41 |
40
|
3anassrs |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n + 1 ) e. NN0 ) |
| 42 |
1 3 31 41 34
|
mulgnn0cld |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( ( n + 1 ) .x. X ) e. B ) |
| 43 |
32 35 42
|
3jca |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) |
| 44 |
|
simpr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. .<_ ( n .x. X ) ) |
| 45 |
|
simp-4l |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> M e. oMnd ) |
| 46 |
21
|
ad4antr |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> M e. Mnd ) |
| 47 |
46 22
|
syl |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> .0. e. B ) |
| 48 |
|
simp-4r |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> X e. B ) |
| 49 |
|
simpr |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> n e. NN0 ) |
| 50 |
1 3 46 49 48
|
mulgnn0cld |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( n .x. X ) e. B ) |
| 51 |
|
simplr |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> .0. .<_ X ) |
| 52 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
| 53 |
1 2 52
|
omndadd |
|- ( ( M e. oMnd /\ ( .0. e. B /\ X e. B /\ ( n .x. X ) e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` M ) ( n .x. X ) ) .<_ ( X ( +g ` M ) ( n .x. X ) ) ) |
| 54 |
45 47 48 50 51 53
|
syl131anc |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( .0. ( +g ` M ) ( n .x. X ) ) .<_ ( X ( +g ` M ) ( n .x. X ) ) ) |
| 55 |
1 52 4
|
mndlid |
|- ( ( M e. Mnd /\ ( n .x. X ) e. B ) -> ( .0. ( +g ` M ) ( n .x. X ) ) = ( n .x. X ) ) |
| 56 |
46 50 55
|
syl2anc |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( .0. ( +g ` M ) ( n .x. X ) ) = ( n .x. X ) ) |
| 57 |
37
|
a1i |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> 1 e. NN0 ) |
| 58 |
1 3 52
|
mulgnn0dir |
|- ( ( M e. Mnd /\ ( 1 e. NN0 /\ n e. NN0 /\ X e. B ) ) -> ( ( 1 + n ) .x. X ) = ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) ) |
| 59 |
46 57 49 48 58
|
syl13anc |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 + n ) .x. X ) = ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) ) |
| 60 |
|
1cnd |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> 1 e. CC ) |
| 61 |
|
simpr3 |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> n e. NN0 ) |
| 62 |
61
|
nn0cnd |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> n e. CC ) |
| 63 |
60 62
|
addcomd |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> ( 1 + n ) = ( n + 1 ) ) |
| 64 |
63
|
3anassrs |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( 1 + n ) = ( n + 1 ) ) |
| 65 |
64
|
oveq1d |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 + n ) .x. X ) = ( ( n + 1 ) .x. X ) ) |
| 66 |
1 3
|
mulg1 |
|- ( X e. B -> ( 1 .x. X ) = X ) |
| 67 |
48 66
|
syl |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( 1 .x. X ) = X ) |
| 68 |
67
|
oveq1d |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) = ( X ( +g ` M ) ( n .x. X ) ) ) |
| 69 |
59 65 68
|
3eqtr3rd |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( X ( +g ` M ) ( n .x. X ) ) = ( ( n + 1 ) .x. X ) ) |
| 70 |
54 56 69
|
3brtr3d |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) |
| 71 |
70
|
adantr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) |
| 72 |
1 2
|
postr |
|- ( ( M e. Poset /\ ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) -> ( ( .0. .<_ ( n .x. X ) /\ ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) ) |
| 73 |
72
|
imp |
|- ( ( ( M e. Poset /\ ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) /\ ( .0. .<_ ( n .x. X ) /\ ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) |
| 74 |
30 43 44 71 73
|
syl22anc |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) |
| 75 |
11 13 15 17 29 74
|
nn0indd |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ N e. NN0 ) -> .0. .<_ ( N .x. X ) ) |
| 76 |
9 75
|
mpdan |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( N .x. X ) ) |
| 77 |
8 76
|
sylbi |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( N .x. X ) ) |