Step |
Hyp |
Ref |
Expression |
1 |
|
omndmul.0 |
|- B = ( Base ` M ) |
2 |
|
omndmul.1 |
|- .<_ = ( le ` M ) |
3 |
|
omndmul2.2 |
|- .x. = ( .g ` M ) |
4 |
|
omndmul2.3 |
|- .0. = ( 0g ` M ) |
5 |
|
df-3an |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) /\ .0. .<_ X ) ) |
6 |
|
anass |
|- ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) <-> ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) ) |
7 |
6
|
anbi1i |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) ) /\ .0. .<_ X ) ) |
8 |
5 7
|
bitr4i |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) <-> ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) ) |
9 |
|
simplr |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> N e. NN0 ) |
10 |
|
oveq1 |
|- ( m = 0 -> ( m .x. X ) = ( 0 .x. X ) ) |
11 |
10
|
breq2d |
|- ( m = 0 -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( 0 .x. X ) ) ) |
12 |
|
oveq1 |
|- ( m = n -> ( m .x. X ) = ( n .x. X ) ) |
13 |
12
|
breq2d |
|- ( m = n -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( n .x. X ) ) ) |
14 |
|
oveq1 |
|- ( m = ( n + 1 ) -> ( m .x. X ) = ( ( n + 1 ) .x. X ) ) |
15 |
14
|
breq2d |
|- ( m = ( n + 1 ) -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( ( n + 1 ) .x. X ) ) ) |
16 |
|
oveq1 |
|- ( m = N -> ( m .x. X ) = ( N .x. X ) ) |
17 |
16
|
breq2d |
|- ( m = N -> ( .0. .<_ ( m .x. X ) <-> .0. .<_ ( N .x. X ) ) ) |
18 |
|
omndtos |
|- ( M e. oMnd -> M e. Toset ) |
19 |
|
tospos |
|- ( M e. Toset -> M e. Poset ) |
20 |
18 19
|
syl |
|- ( M e. oMnd -> M e. Poset ) |
21 |
|
omndmnd |
|- ( M e. oMnd -> M e. Mnd ) |
22 |
1 4
|
mndidcl |
|- ( M e. Mnd -> .0. e. B ) |
23 |
21 22
|
syl |
|- ( M e. oMnd -> .0. e. B ) |
24 |
1 2
|
posref |
|- ( ( M e. Poset /\ .0. e. B ) -> .0. .<_ .0. ) |
25 |
20 23 24
|
syl2anc |
|- ( M e. oMnd -> .0. .<_ .0. ) |
26 |
25
|
ad3antrrr |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ .0. ) |
27 |
1 4 3
|
mulg0 |
|- ( X e. B -> ( 0 .x. X ) = .0. ) |
28 |
27
|
ad3antlr |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> ( 0 .x. X ) = .0. ) |
29 |
26 28
|
breqtrrd |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( 0 .x. X ) ) |
30 |
20
|
ad5antr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> M e. Poset ) |
31 |
21
|
ad5antr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> M e. Mnd ) |
32 |
31 22
|
syl |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. e. B ) |
33 |
|
simplr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> n e. NN0 ) |
34 |
|
simp-5r |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> X e. B ) |
35 |
1 3
|
mulgnn0cl |
|- ( ( M e. Mnd /\ n e. NN0 /\ X e. B ) -> ( n .x. X ) e. B ) |
36 |
31 33 34 35
|
syl3anc |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n .x. X ) e. B ) |
37 |
|
simpr32 |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> n e. NN0 ) |
38 |
|
1nn0 |
|- 1 e. NN0 |
39 |
38
|
a1i |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> 1 e. NN0 ) |
40 |
37 39
|
nn0addcld |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) ) -> ( n + 1 ) e. NN0 ) |
41 |
40
|
3anassrs |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ ( .0. .<_ X /\ n e. NN0 /\ .0. .<_ ( n .x. X ) ) ) -> ( n + 1 ) e. NN0 ) |
42 |
41
|
3anassrs |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n + 1 ) e. NN0 ) |
43 |
1 3
|
mulgnn0cl |
|- ( ( M e. Mnd /\ ( n + 1 ) e. NN0 /\ X e. B ) -> ( ( n + 1 ) .x. X ) e. B ) |
44 |
31 42 34 43
|
syl3anc |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( ( n + 1 ) .x. X ) e. B ) |
45 |
32 36 44
|
3jca |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) |
46 |
|
simpr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. .<_ ( n .x. X ) ) |
47 |
|
simp-4l |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> M e. oMnd ) |
48 |
21
|
ad4antr |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> M e. Mnd ) |
49 |
48 22
|
syl |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> .0. e. B ) |
50 |
|
simp-4r |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> X e. B ) |
51 |
|
simpr |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> n e. NN0 ) |
52 |
48 51 50 35
|
syl3anc |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( n .x. X ) e. B ) |
53 |
|
simplr |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> .0. .<_ X ) |
54 |
|
eqid |
|- ( +g ` M ) = ( +g ` M ) |
55 |
1 2 54
|
omndadd |
|- ( ( M e. oMnd /\ ( .0. e. B /\ X e. B /\ ( n .x. X ) e. B ) /\ .0. .<_ X ) -> ( .0. ( +g ` M ) ( n .x. X ) ) .<_ ( X ( +g ` M ) ( n .x. X ) ) ) |
56 |
47 49 50 52 53 55
|
syl131anc |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( .0. ( +g ` M ) ( n .x. X ) ) .<_ ( X ( +g ` M ) ( n .x. X ) ) ) |
57 |
1 54 4
|
mndlid |
|- ( ( M e. Mnd /\ ( n .x. X ) e. B ) -> ( .0. ( +g ` M ) ( n .x. X ) ) = ( n .x. X ) ) |
58 |
48 52 57
|
syl2anc |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( .0. ( +g ` M ) ( n .x. X ) ) = ( n .x. X ) ) |
59 |
38
|
a1i |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> 1 e. NN0 ) |
60 |
1 3 54
|
mulgnn0dir |
|- ( ( M e. Mnd /\ ( 1 e. NN0 /\ n e. NN0 /\ X e. B ) ) -> ( ( 1 + n ) .x. X ) = ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) ) |
61 |
48 59 51 50 60
|
syl13anc |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 + n ) .x. X ) = ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) ) |
62 |
|
1cnd |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> 1 e. CC ) |
63 |
|
simpr3 |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> n e. NN0 ) |
64 |
63
|
nn0cnd |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> n e. CC ) |
65 |
62 64
|
addcomd |
|- ( ( ( M e. oMnd /\ X e. B ) /\ ( N e. NN0 /\ .0. .<_ X /\ n e. NN0 ) ) -> ( 1 + n ) = ( n + 1 ) ) |
66 |
65
|
3anassrs |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( 1 + n ) = ( n + 1 ) ) |
67 |
66
|
oveq1d |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 + n ) .x. X ) = ( ( n + 1 ) .x. X ) ) |
68 |
1 3
|
mulg1 |
|- ( X e. B -> ( 1 .x. X ) = X ) |
69 |
50 68
|
syl |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( 1 .x. X ) = X ) |
70 |
69
|
oveq1d |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( ( 1 .x. X ) ( +g ` M ) ( n .x. X ) ) = ( X ( +g ` M ) ( n .x. X ) ) ) |
71 |
61 67 70
|
3eqtr3rd |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( X ( +g ` M ) ( n .x. X ) ) = ( ( n + 1 ) .x. X ) ) |
72 |
56 58 71
|
3brtr3d |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) -> ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) |
73 |
72
|
adantr |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) |
74 |
1 2
|
postr |
|- ( ( M e. Poset /\ ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) -> ( ( .0. .<_ ( n .x. X ) /\ ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) ) |
75 |
74
|
imp |
|- ( ( ( M e. Poset /\ ( .0. e. B /\ ( n .x. X ) e. B /\ ( ( n + 1 ) .x. X ) e. B ) ) /\ ( .0. .<_ ( n .x. X ) /\ ( n .x. X ) .<_ ( ( n + 1 ) .x. X ) ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) |
76 |
30 45 46 73 75
|
syl22anc |
|- ( ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ n e. NN0 ) /\ .0. .<_ ( n .x. X ) ) -> .0. .<_ ( ( n + 1 ) .x. X ) ) |
77 |
11 13 15 17 29 76
|
nn0indd |
|- ( ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) /\ N e. NN0 ) -> .0. .<_ ( N .x. X ) ) |
78 |
9 77
|
mpdan |
|- ( ( ( ( M e. oMnd /\ X e. B ) /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( N .x. X ) ) |
79 |
8 78
|
sylbi |
|- ( ( M e. oMnd /\ ( X e. B /\ N e. NN0 ) /\ .0. .<_ X ) -> .0. .<_ ( N .x. X ) ) |