Step |
Hyp |
Ref |
Expression |
1 |
|
omndmul.0 |
|
2 |
|
omndmul.1 |
|
3 |
|
omndmul2.2 |
|
4 |
|
omndmul2.3 |
|
5 |
|
df-3an |
|
6 |
|
anass |
|
7 |
6
|
anbi1i |
|
8 |
5 7
|
bitr4i |
|
9 |
|
simplr |
|
10 |
|
oveq1 |
|
11 |
10
|
breq2d |
|
12 |
|
oveq1 |
|
13 |
12
|
breq2d |
|
14 |
|
oveq1 |
|
15 |
14
|
breq2d |
|
16 |
|
oveq1 |
|
17 |
16
|
breq2d |
|
18 |
|
omndtos |
|
19 |
|
tospos |
|
20 |
18 19
|
syl |
|
21 |
|
omndmnd |
|
22 |
1 4
|
mndidcl |
|
23 |
21 22
|
syl |
|
24 |
1 2
|
posref |
|
25 |
20 23 24
|
syl2anc |
|
26 |
25
|
ad3antrrr |
|
27 |
1 4 3
|
mulg0 |
|
28 |
27
|
ad3antlr |
|
29 |
26 28
|
breqtrrd |
|
30 |
20
|
ad5antr |
|
31 |
21
|
ad5antr |
|
32 |
31 22
|
syl |
|
33 |
|
simplr |
|
34 |
|
simp-5r |
|
35 |
1 3
|
mulgnn0cl |
|
36 |
31 33 34 35
|
syl3anc |
|
37 |
|
simpr32 |
|
38 |
|
1nn0 |
|
39 |
38
|
a1i |
|
40 |
37 39
|
nn0addcld |
|
41 |
40
|
3anassrs |
|
42 |
41
|
3anassrs |
|
43 |
1 3
|
mulgnn0cl |
|
44 |
31 42 34 43
|
syl3anc |
|
45 |
32 36 44
|
3jca |
|
46 |
|
simpr |
|
47 |
|
simp-4l |
|
48 |
21
|
ad4antr |
|
49 |
48 22
|
syl |
|
50 |
|
simp-4r |
|
51 |
|
simpr |
|
52 |
48 51 50 35
|
syl3anc |
|
53 |
|
simplr |
|
54 |
|
eqid |
|
55 |
1 2 54
|
omndadd |
|
56 |
47 49 50 52 53 55
|
syl131anc |
|
57 |
1 54 4
|
mndlid |
|
58 |
48 52 57
|
syl2anc |
|
59 |
38
|
a1i |
|
60 |
1 3 54
|
mulgnn0dir |
|
61 |
48 59 51 50 60
|
syl13anc |
|
62 |
|
1cnd |
|
63 |
|
simpr3 |
|
64 |
63
|
nn0cnd |
|
65 |
62 64
|
addcomd |
|
66 |
65
|
3anassrs |
|
67 |
66
|
oveq1d |
|
68 |
1 3
|
mulg1 |
|
69 |
50 68
|
syl |
|
70 |
69
|
oveq1d |
|
71 |
61 67 70
|
3eqtr3rd |
|
72 |
56 58 71
|
3brtr3d |
|
73 |
72
|
adantr |
|
74 |
1 2
|
postr |
|
75 |
74
|
imp |
|
76 |
30 45 46 73 75
|
syl22anc |
|
77 |
11 13 15 17 29 76
|
nn0indd |
|
78 |
9 77
|
mpdan |
|
79 |
8 78
|
sylbi |
|