| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omndmul.0 |
|
| 2 |
|
omndmul.1 |
|
| 3 |
|
omndmul2.2 |
|
| 4 |
|
omndmul2.3 |
|
| 5 |
|
df-3an |
|
| 6 |
|
anass |
|
| 7 |
6
|
anbi1i |
|
| 8 |
5 7
|
bitr4i |
|
| 9 |
|
simplr |
|
| 10 |
|
oveq1 |
|
| 11 |
10
|
breq2d |
|
| 12 |
|
oveq1 |
|
| 13 |
12
|
breq2d |
|
| 14 |
|
oveq1 |
|
| 15 |
14
|
breq2d |
|
| 16 |
|
oveq1 |
|
| 17 |
16
|
breq2d |
|
| 18 |
|
omndtos |
|
| 19 |
|
tospos |
|
| 20 |
18 19
|
syl |
|
| 21 |
|
omndmnd |
|
| 22 |
1 4
|
mndidcl |
|
| 23 |
21 22
|
syl |
|
| 24 |
1 2
|
posref |
|
| 25 |
20 23 24
|
syl2anc |
|
| 26 |
25
|
ad3antrrr |
|
| 27 |
1 4 3
|
mulg0 |
|
| 28 |
27
|
ad3antlr |
|
| 29 |
26 28
|
breqtrrd |
|
| 30 |
20
|
ad5antr |
|
| 31 |
21
|
ad5antr |
|
| 32 |
31 22
|
syl |
|
| 33 |
|
simplr |
|
| 34 |
|
simp-5r |
|
| 35 |
1 3 31 33 34
|
mulgnn0cld |
|
| 36 |
|
simpr32 |
|
| 37 |
|
1nn0 |
|
| 38 |
37
|
a1i |
|
| 39 |
36 38
|
nn0addcld |
|
| 40 |
39
|
3anassrs |
|
| 41 |
40
|
3anassrs |
|
| 42 |
1 3 31 41 34
|
mulgnn0cld |
|
| 43 |
32 35 42
|
3jca |
|
| 44 |
|
simpr |
|
| 45 |
|
simp-4l |
|
| 46 |
21
|
ad4antr |
|
| 47 |
46 22
|
syl |
|
| 48 |
|
simp-4r |
|
| 49 |
|
simpr |
|
| 50 |
1 3 46 49 48
|
mulgnn0cld |
|
| 51 |
|
simplr |
|
| 52 |
|
eqid |
|
| 53 |
1 2 52
|
omndadd |
|
| 54 |
45 47 48 50 51 53
|
syl131anc |
|
| 55 |
1 52 4
|
mndlid |
|
| 56 |
46 50 55
|
syl2anc |
|
| 57 |
37
|
a1i |
|
| 58 |
1 3 52
|
mulgnn0dir |
|
| 59 |
46 57 49 48 58
|
syl13anc |
|
| 60 |
|
1cnd |
|
| 61 |
|
simpr3 |
|
| 62 |
61
|
nn0cnd |
|
| 63 |
60 62
|
addcomd |
|
| 64 |
63
|
3anassrs |
|
| 65 |
64
|
oveq1d |
|
| 66 |
1 3
|
mulg1 |
|
| 67 |
48 66
|
syl |
|
| 68 |
67
|
oveq1d |
|
| 69 |
59 65 68
|
3eqtr3rd |
|
| 70 |
54 56 69
|
3brtr3d |
|
| 71 |
70
|
adantr |
|
| 72 |
1 2
|
postr |
|
| 73 |
72
|
imp |
|
| 74 |
30 43 44 71 73
|
syl22anc |
|
| 75 |
11 13 15 17 29 74
|
nn0indd |
|
| 76 |
9 75
|
mpdan |
|
| 77 |
8 76
|
sylbi |
|