| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 2 |
|
dfss2 |
⊢ ( ( 0 [,] +∞ ) ⊆ ℝ* ↔ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) ) |
| 3 |
1 2
|
mpbi |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( 0 [,] +∞ ) |
| 4 |
|
ovex |
⊢ ( 0 [,] +∞ ) ∈ V |
| 5 |
|
eqid |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) = ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 6 |
|
xrsbas |
⊢ ℝ* = ( Base ‘ ℝ*𝑠 ) |
| 7 |
5 6
|
ressbas |
⊢ ( ( 0 [,] +∞ ) ∈ V → ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) ) |
| 8 |
4 7
|
ax-mp |
⊢ ( ( 0 [,] +∞ ) ∩ ℝ* ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 9 |
3 8
|
eqtr3i |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |