Step |
Hyp |
Ref |
Expression |
1 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
2 |
|
cmnmnd |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd -> ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd ) |
3 |
1 2
|
ax-mp |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd |
4 |
|
ovex |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. _V |
5 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
6 |
|
xrge0le |
|- <_ = ( le ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
7 |
|
eliccxr |
|- ( x e. ( 0 [,] +oo ) -> x e. RR* ) |
8 |
7
|
xrleidd |
|- ( x e. ( 0 [,] +oo ) -> x <_ x ) |
9 |
|
eliccxr |
|- ( y e. ( 0 [,] +oo ) -> y e. RR* ) |
10 |
|
xrletri3 |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x = y <-> ( x <_ y /\ y <_ x ) ) ) |
11 |
10
|
biimprd |
|- ( ( x e. RR* /\ y e. RR* ) -> ( ( x <_ y /\ y <_ x ) -> x = y ) ) |
12 |
7 9 11
|
syl2an |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( ( x <_ y /\ y <_ x ) -> x = y ) ) |
13 |
|
eliccxr |
|- ( z e. ( 0 [,] +oo ) -> z e. RR* ) |
14 |
|
xrletr |
|- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
15 |
7 9 13 14
|
syl3an |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( ( x <_ y /\ y <_ z ) -> x <_ z ) ) |
16 |
4 5 6 8 12 15
|
isposi |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Poset |
17 |
|
xrletri |
|- ( ( x e. RR* /\ y e. RR* ) -> ( x <_ y \/ y <_ x ) ) |
18 |
7 9 17
|
syl2an |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) ) -> ( x <_ y \/ y <_ x ) ) |
19 |
18
|
rgen2 |
|- A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x <_ y \/ y <_ x ) |
20 |
5 6
|
istos |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. Toset <-> ( ( RR*s |`s ( 0 [,] +oo ) ) e. Poset /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) ( x <_ y \/ y <_ x ) ) ) |
21 |
16 19 20
|
mpbir2an |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. Toset |
22 |
|
xleadd1a |
|- ( ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) /\ x <_ y ) -> ( x +e z ) <_ ( y +e z ) ) |
23 |
22
|
ex |
|- ( ( x e. RR* /\ y e. RR* /\ z e. RR* ) -> ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) ) |
24 |
7 9 13 23
|
syl3an |
|- ( ( x e. ( 0 [,] +oo ) /\ y e. ( 0 [,] +oo ) /\ z e. ( 0 [,] +oo ) ) -> ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) ) |
25 |
24
|
rgen3 |
|- A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) A. z e. ( 0 [,] +oo ) ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) |
26 |
|
xrge0plusg |
|- +e = ( +g ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
27 |
5 26 6
|
isomnd |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) e. oMnd <-> ( ( RR*s |`s ( 0 [,] +oo ) ) e. Mnd /\ ( RR*s |`s ( 0 [,] +oo ) ) e. Toset /\ A. x e. ( 0 [,] +oo ) A. y e. ( 0 [,] +oo ) A. z e. ( 0 [,] +oo ) ( x <_ y -> ( x +e z ) <_ ( y +e z ) ) ) ) |
28 |
3 21 25 27
|
mpbir3an |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. oMnd |