Metamath Proof Explorer


Theorem xrleidd

Description: 'Less than or equal to' is reflexive for extended reals. Deduction form of xrleid . (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis xrleidd.1
|- ( ph -> A e. RR* )
Assertion xrleidd
|- ( ph -> A <_ A )

Proof

Step Hyp Ref Expression
1 xrleidd.1
 |-  ( ph -> A e. RR* )
2 xrleid
 |-  ( A e. RR* -> A <_ A )
3 1 2 syl
 |-  ( ph -> A <_ A )