Metamath Proof Explorer


Theorem rrextust

Description: The uniformity of an extension of RR is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypotheses rrextust.b B=BaseR
rrextust.d D=distRB×B
Assertion rrextust RℝExtUnifStR=metUnifD

Proof

Step Hyp Ref Expression
1 rrextust.b B=BaseR
2 rrextust.d D=distRB×B
3 eqid ℤModR=ℤModR
4 1 2 3 isrrext RℝExtRNrmRingRDivRingℤModRNrmModchrR=0RCUnifSpUnifStR=metUnifD
5 4 simp3bi RℝExtRCUnifSpUnifStR=metUnifD
6 5 simprd RℝExtUnifStR=metUnifD