Description: The uniformity of an extension of RR is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rrextust.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
rrextust.d | ⊢ 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) | ||
Assertion | rrextust | ⊢ ( 𝑅 ∈ ℝExt → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextust.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
2 | rrextust.d | ⊢ 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) ) | |
3 | eqid | ⊢ ( ℤMod ‘ 𝑅 ) = ( ℤMod ‘ 𝑅 ) | |
4 | 1 2 3 | isrrext | ⊢ ( 𝑅 ∈ ℝExt ↔ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( ( ℤMod ‘ 𝑅 ) ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) ) |
5 | 4 | simp3bi | ⊢ ( 𝑅 ∈ ℝExt → ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) |
6 | 5 | simprd | ⊢ ( 𝑅 ∈ ℝExt → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) |