Metamath Proof Explorer


Theorem rrextust

Description: The uniformity of an extension of RR is the uniformity generated by its distance. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypotheses rrextust.b 𝐵 = ( Base ‘ 𝑅 )
rrextust.d 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) )
Assertion rrextust ( 𝑅 ∈ ℝExt → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) )

Proof

Step Hyp Ref Expression
1 rrextust.b 𝐵 = ( Base ‘ 𝑅 )
2 rrextust.d 𝐷 = ( ( dist ‘ 𝑅 ) ↾ ( 𝐵 × 𝐵 ) )
3 eqid ( ℤMod ‘ 𝑅 ) = ( ℤMod ‘ 𝑅 )
4 1 2 3 isrrext ( 𝑅 ∈ ℝExt ↔ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( ( ℤMod ‘ 𝑅 ) ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) ) )
5 4 simp3bi ( 𝑅 ∈ ℝExt → ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) ) )
6 5 simprd ( 𝑅 ∈ ℝExt → ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ 𝐷 ) )