Metamath Proof Explorer


Theorem rrexthaus

Description: The topology of an extension of RR is Hausdorff. (Contributed by Thierry Arnoux, 7-Sep-2018)

Ref Expression
Hypothesis rrexthaus.1 K = TopOpen R
Assertion rrexthaus R ℝExt K Haus

Proof

Step Hyp Ref Expression
1 rrexthaus.1 K = TopOpen R
2 rrextnrg R ℝExt R NrmRing
3 nrgngp R NrmRing R NrmGrp
4 ngpxms R NrmGrp R ∞MetSp
5 2 3 4 3syl R ℝExt R ∞MetSp
6 eqid Base R = Base R
7 eqid dist R Base R × Base R = dist R Base R × Base R
8 1 6 7 xmstopn R ∞MetSp K = MetOpen dist R Base R × Base R
9 5 8 syl R ℝExt K = MetOpen dist R Base R × Base R
10 6 7 xmsxmet R ∞MetSp dist R Base R × Base R ∞Met Base R
11 eqid MetOpen dist R Base R × Base R = MetOpen dist R Base R × Base R
12 11 methaus dist R Base R × Base R ∞Met Base R MetOpen dist R Base R × Base R Haus
13 5 10 12 3syl R ℝExt MetOpen dist R Base R × Base R Haus
14 9 13 eqeltrd R ℝExt K Haus