Description: An extension of RR is a topological space. (Contributed by Thierry Arnoux, 7-Sep-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rrexttps | |- ( R e. RRExt -> R e. TopSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrextnrg | |- ( R e. RRExt -> R e. NrmRing ) |
|
2 | nrgngp | |- ( R e. NrmRing -> R e. NrmGrp ) |
|
3 | ngpxms | |- ( R e. NrmGrp -> R e. *MetSp ) |
|
4 | 1 2 3 | 3syl | |- ( R e. RRExt -> R e. *MetSp ) |
5 | xmstps | |- ( R e. *MetSp -> R e. TopSp ) |
|
6 | 4 5 | syl | |- ( R e. RRExt -> R e. TopSp ) |