Metamath Proof Explorer


Theorem rrhcne

Description: If R is an extension of RR , then the canonical homomorphism of RR into R is continuous. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypotheses rrhcne.j J = topGen ran .
rrhcne.k K = TopOpen R
Assertion rrhcne R ℝExt ℝHom R J Cn K

Proof

Step Hyp Ref Expression
1 rrhcne.j J = topGen ran .
2 rrhcne.k K = TopOpen R
3 eqid dist R Base R × Base R = dist R Base R × Base R
4 eqid Base R = Base R
5 eqid ℤMod R = ℤMod R
6 rrextdrg R ℝExt R DivRing
7 rrextnrg R ℝExt R NrmRing
8 5 rrextnlm R ℝExt ℤMod R NrmMod
9 rrextchr R ℝExt chr R = 0
10 rrextcusp R ℝExt R CUnifSp
11 4 3 rrextust R ℝExt UnifSt R = metUnif dist R Base R × Base R
12 3 1 4 2 5 6 7 8 9 10 11 rrhcn R ℝExt ℝHom R J Cn K