Description: The RRHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | rrhqima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | eqid | |
|
3 | 1 2 | rrhval | |
4 | 3 | fveq1d | |
5 | 4 | adantr | |
6 | uniretop | |
|
7 | eqid | |
|
8 | retop | |
|
9 | 8 | a1i | |
10 | 2 | rrexthaus | |
11 | 10 | adantr | |
12 | qssre | |
|
13 | 12 | a1i | |
14 | rrextnrg | |
|
15 | rrextdrg | |
|
16 | 14 15 | elind | |
17 | eqid | |
|
18 | 17 | rrextnlm | |
19 | rrextchr | |
|
20 | eqid | |
|
21 | qqtopn | |
|
22 | 20 21 17 2 | qqhcn | |
23 | 16 18 19 22 | syl3anc | |
24 | retopn | |
|
25 | 24 | eqcomi | |
26 | 25 | oveq1i | |
27 | 26 | oveq1i | |
28 | 23 27 | eleqtrdi | |
29 | 28 | adantr | |
30 | simpr | |
|
31 | 6 7 9 11 13 29 30 | cnextfres | |
32 | 5 31 | eqtrd | |