Metamath Proof Explorer


Theorem rrhqima

Description: The RRHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Assertion rrhqima RℝExtQℝHomRQ=ℚHomRQ

Proof

Step Hyp Ref Expression
1 eqid topGenran.=topGenran.
2 eqid TopOpenR=TopOpenR
3 1 2 rrhval RℝExtℝHomR=topGenran.CnExtTopOpenRℚHomR
4 3 fveq1d RℝExtℝHomRQ=topGenran.CnExtTopOpenRℚHomRQ
5 4 adantr RℝExtQℝHomRQ=topGenran.CnExtTopOpenRℚHomRQ
6 uniretop =topGenran.
7 eqid TopOpenR=TopOpenR
8 retop topGenran.Top
9 8 a1i RℝExtQtopGenran.Top
10 2 rrexthaus RℝExtTopOpenRHaus
11 10 adantr RℝExtQTopOpenRHaus
12 qssre
13 12 a1i RℝExtQ
14 rrextnrg RℝExtRNrmRing
15 rrextdrg RℝExtRDivRing
16 14 15 elind RℝExtRNrmRingDivRing
17 eqid ℤModR=ℤModR
18 17 rrextnlm RℝExtℤModRNrmMod
19 rrextchr RℝExtchrR=0
20 eqid fld𝑠=fld𝑠
21 qqtopn TopOpenfld𝑡=TopOpenfld𝑠
22 20 21 17 2 qqhcn RNrmRingDivRingℤModRNrmModchrR=0ℚHomRTopOpenfld𝑡CnTopOpenR
23 16 18 19 22 syl3anc RℝExtℚHomRTopOpenfld𝑡CnTopOpenR
24 retopn topGenran.=TopOpenfld
25 24 eqcomi TopOpenfld=topGenran.
26 25 oveq1i TopOpenfld𝑡=topGenran.𝑡
27 26 oveq1i TopOpenfld𝑡CnTopOpenR=topGenran.𝑡CnTopOpenR
28 23 27 eleqtrdi RℝExtℚHomRtopGenran.𝑡CnTopOpenR
29 28 adantr RℝExtQℚHomRtopGenran.𝑡CnTopOpenR
30 simpr RℝExtQQ
31 6 7 9 11 13 29 30 cnextfres RℝExtQtopGenran.CnExtTopOpenRℚHomRQ=ℚHomRQ
32 5 31 eqtrd RℝExtQℝHomRQ=ℚHomRQ