Metamath Proof Explorer


Theorem rrhqima

Description: The RRHom homomorphism leaves rational numbers unchanged. (Contributed by Thierry Arnoux, 27-Mar-2018)

Ref Expression
Assertion rrhqima R ℝExt Q ℝHom R Q = ℚHom R Q

Proof

Step Hyp Ref Expression
1 eqid topGen ran . = topGen ran .
2 eqid TopOpen R = TopOpen R
3 1 2 rrhval R ℝExt ℝHom R = topGen ran . CnExt TopOpen R ℚHom R
4 3 fveq1d R ℝExt ℝHom R Q = topGen ran . CnExt TopOpen R ℚHom R Q
5 4 adantr R ℝExt Q ℝHom R Q = topGen ran . CnExt TopOpen R ℚHom R Q
6 uniretop = topGen ran .
7 eqid TopOpen R = TopOpen R
8 retop topGen ran . Top
9 8 a1i R ℝExt Q topGen ran . Top
10 2 rrexthaus R ℝExt TopOpen R Haus
11 10 adantr R ℝExt Q TopOpen R Haus
12 qssre
13 12 a1i R ℝExt Q
14 rrextnrg R ℝExt R NrmRing
15 rrextdrg R ℝExt R DivRing
16 14 15 elind R ℝExt R NrmRing DivRing
17 eqid ℤMod R = ℤMod R
18 17 rrextnlm R ℝExt ℤMod R NrmMod
19 rrextchr R ℝExt chr R = 0
20 eqid fld 𝑠 = fld 𝑠
21 qqtopn TopOpen fld 𝑡 = TopOpen fld 𝑠
22 20 21 17 2 qqhcn R NrmRing DivRing ℤMod R NrmMod chr R = 0 ℚHom R TopOpen fld 𝑡 Cn TopOpen R
23 16 18 19 22 syl3anc R ℝExt ℚHom R TopOpen fld 𝑡 Cn TopOpen R
24 retopn topGen ran . = TopOpen fld
25 24 eqcomi TopOpen fld = topGen ran .
26 25 oveq1i TopOpen fld 𝑡 = topGen ran . 𝑡
27 26 oveq1i TopOpen fld 𝑡 Cn TopOpen R = topGen ran . 𝑡 Cn TopOpen R
28 23 27 eleqtrdi R ℝExt ℚHom R topGen ran . 𝑡 Cn TopOpen R
29 28 adantr R ℝExt Q ℚHom R topGen ran . 𝑡 Cn TopOpen R
30 simpr R ℝExt Q Q
31 6 7 9 11 13 29 30 cnextfres R ℝExt Q topGen ran . CnExt TopOpen R ℚHom R Q = ℚHom R Q
32 5 31 eqtrd R ℝExt Q ℝHom R Q = ℚHom R Q