Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
2 |
|
eqid |
|- ( TopOpen ` R ) = ( TopOpen ` R ) |
3 |
1 2
|
rrhval |
|- ( R e. RRExt -> ( RRHom ` R ) = ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ) |
4 |
3
|
fveq1d |
|- ( R e. RRExt -> ( ( RRHom ` R ) ` Q ) = ( ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ` Q ) ) |
5 |
4
|
adantr |
|- ( ( R e. RRExt /\ Q e. QQ ) -> ( ( RRHom ` R ) ` Q ) = ( ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ` Q ) ) |
6 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
7 |
|
eqid |
|- U. ( TopOpen ` R ) = U. ( TopOpen ` R ) |
8 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
9 |
8
|
a1i |
|- ( ( R e. RRExt /\ Q e. QQ ) -> ( topGen ` ran (,) ) e. Top ) |
10 |
2
|
rrexthaus |
|- ( R e. RRExt -> ( TopOpen ` R ) e. Haus ) |
11 |
10
|
adantr |
|- ( ( R e. RRExt /\ Q e. QQ ) -> ( TopOpen ` R ) e. Haus ) |
12 |
|
qssre |
|- QQ C_ RR |
13 |
12
|
a1i |
|- ( ( R e. RRExt /\ Q e. QQ ) -> QQ C_ RR ) |
14 |
|
rrextnrg |
|- ( R e. RRExt -> R e. NrmRing ) |
15 |
|
rrextdrg |
|- ( R e. RRExt -> R e. DivRing ) |
16 |
14 15
|
elind |
|- ( R e. RRExt -> R e. ( NrmRing i^i DivRing ) ) |
17 |
|
eqid |
|- ( ZMod ` R ) = ( ZMod ` R ) |
18 |
17
|
rrextnlm |
|- ( R e. RRExt -> ( ZMod ` R ) e. NrmMod ) |
19 |
|
rrextchr |
|- ( R e. RRExt -> ( chr ` R ) = 0 ) |
20 |
|
eqid |
|- ( CCfld |`s QQ ) = ( CCfld |`s QQ ) |
21 |
|
qqtopn |
|- ( ( TopOpen ` RRfld ) |`t QQ ) = ( TopOpen ` ( CCfld |`s QQ ) ) |
22 |
20 21 17 2
|
qqhcn |
|- ( ( R e. ( NrmRing i^i DivRing ) /\ ( ZMod ` R ) e. NrmMod /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( ( ( TopOpen ` RRfld ) |`t QQ ) Cn ( TopOpen ` R ) ) ) |
23 |
16 18 19 22
|
syl3anc |
|- ( R e. RRExt -> ( QQHom ` R ) e. ( ( ( TopOpen ` RRfld ) |`t QQ ) Cn ( TopOpen ` R ) ) ) |
24 |
|
retopn |
|- ( topGen ` ran (,) ) = ( TopOpen ` RRfld ) |
25 |
24
|
eqcomi |
|- ( TopOpen ` RRfld ) = ( topGen ` ran (,) ) |
26 |
25
|
oveq1i |
|- ( ( TopOpen ` RRfld ) |`t QQ ) = ( ( topGen ` ran (,) ) |`t QQ ) |
27 |
26
|
oveq1i |
|- ( ( ( TopOpen ` RRfld ) |`t QQ ) Cn ( TopOpen ` R ) ) = ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( TopOpen ` R ) ) |
28 |
23 27
|
eleqtrdi |
|- ( R e. RRExt -> ( QQHom ` R ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( TopOpen ` R ) ) ) |
29 |
28
|
adantr |
|- ( ( R e. RRExt /\ Q e. QQ ) -> ( QQHom ` R ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( TopOpen ` R ) ) ) |
30 |
|
simpr |
|- ( ( R e. RRExt /\ Q e. QQ ) -> Q e. QQ ) |
31 |
6 7 9 11 13 29 30
|
cnextfres |
|- ( ( R e. RRExt /\ Q e. QQ ) -> ( ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ` Q ) = ( ( QQHom ` R ) ` Q ) ) |
32 |
5 31
|
eqtrd |
|- ( ( R e. RRExt /\ Q e. QQ ) -> ( ( RRHom ` R ) ` Q ) = ( ( QQHom ` R ) ` Q ) ) |