| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) ) | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` R ) = ( TopOpen ` R ) | 
						
							| 3 | 1 2 | rrhval |  |-  ( R e. RRExt -> ( RRHom ` R ) = ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ) | 
						
							| 4 | 3 | fveq1d |  |-  ( R e. RRExt -> ( ( RRHom ` R ) ` Q ) = ( ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ` Q ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> ( ( RRHom ` R ) ` Q ) = ( ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ` Q ) ) | 
						
							| 6 |  | uniretop |  |-  RR = U. ( topGen ` ran (,) ) | 
						
							| 7 |  | eqid |  |-  U. ( TopOpen ` R ) = U. ( TopOpen ` R ) | 
						
							| 8 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 9 | 8 | a1i |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> ( topGen ` ran (,) ) e. Top ) | 
						
							| 10 | 2 | rrexthaus |  |-  ( R e. RRExt -> ( TopOpen ` R ) e. Haus ) | 
						
							| 11 | 10 | adantr |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> ( TopOpen ` R ) e. Haus ) | 
						
							| 12 |  | qssre |  |-  QQ C_ RR | 
						
							| 13 | 12 | a1i |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> QQ C_ RR ) | 
						
							| 14 |  | rrextnrg |  |-  ( R e. RRExt -> R e. NrmRing ) | 
						
							| 15 |  | rrextdrg |  |-  ( R e. RRExt -> R e. DivRing ) | 
						
							| 16 | 14 15 | elind |  |-  ( R e. RRExt -> R e. ( NrmRing i^i DivRing ) ) | 
						
							| 17 |  | eqid |  |-  ( ZMod ` R ) = ( ZMod ` R ) | 
						
							| 18 | 17 | rrextnlm |  |-  ( R e. RRExt -> ( ZMod ` R ) e. NrmMod ) | 
						
							| 19 |  | rrextchr |  |-  ( R e. RRExt -> ( chr ` R ) = 0 ) | 
						
							| 20 |  | eqid |  |-  ( CCfld |`s QQ ) = ( CCfld |`s QQ ) | 
						
							| 21 |  | qqtopn |  |-  ( ( TopOpen ` RRfld ) |`t QQ ) = ( TopOpen ` ( CCfld |`s QQ ) ) | 
						
							| 22 | 20 21 17 2 | qqhcn |  |-  ( ( R e. ( NrmRing i^i DivRing ) /\ ( ZMod ` R ) e. NrmMod /\ ( chr ` R ) = 0 ) -> ( QQHom ` R ) e. ( ( ( TopOpen ` RRfld ) |`t QQ ) Cn ( TopOpen ` R ) ) ) | 
						
							| 23 | 16 18 19 22 | syl3anc |  |-  ( R e. RRExt -> ( QQHom ` R ) e. ( ( ( TopOpen ` RRfld ) |`t QQ ) Cn ( TopOpen ` R ) ) ) | 
						
							| 24 |  | retopn |  |-  ( topGen ` ran (,) ) = ( TopOpen ` RRfld ) | 
						
							| 25 | 24 | eqcomi |  |-  ( TopOpen ` RRfld ) = ( topGen ` ran (,) ) | 
						
							| 26 | 25 | oveq1i |  |-  ( ( TopOpen ` RRfld ) |`t QQ ) = ( ( topGen ` ran (,) ) |`t QQ ) | 
						
							| 27 | 26 | oveq1i |  |-  ( ( ( TopOpen ` RRfld ) |`t QQ ) Cn ( TopOpen ` R ) ) = ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( TopOpen ` R ) ) | 
						
							| 28 | 23 27 | eleqtrdi |  |-  ( R e. RRExt -> ( QQHom ` R ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( TopOpen ` R ) ) ) | 
						
							| 29 | 28 | adantr |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> ( QQHom ` R ) e. ( ( ( topGen ` ran (,) ) |`t QQ ) Cn ( TopOpen ` R ) ) ) | 
						
							| 30 |  | simpr |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> Q e. QQ ) | 
						
							| 31 | 6 7 9 11 13 29 30 | cnextfres |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> ( ( ( ( topGen ` ran (,) ) CnExt ( TopOpen ` R ) ) ` ( QQHom ` R ) ) ` Q ) = ( ( QQHom ` R ) ` Q ) ) | 
						
							| 32 | 5 31 | eqtrd |  |-  ( ( R e. RRExt /\ Q e. QQ ) -> ( ( RRHom ` R ) ` Q ) = ( ( QQHom ` R ) ` Q ) ) |