| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 2 |
|
eqid |
|- ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) = ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) |
| 3 |
|
eqid |
|- ( ZMod ` R ) = ( ZMod ` R ) |
| 4 |
1 2 3
|
isrrext |
|- ( R e. RRExt <-> ( ( R e. NrmRing /\ R e. DivRing ) /\ ( ( ZMod ` R ) e. NrmMod /\ ( chr ` R ) = 0 ) /\ ( R e. CUnifSp /\ ( UnifSt ` R ) = ( metUnif ` ( ( dist ` R ) |` ( ( Base ` R ) X. ( Base ` R ) ) ) ) ) ) ) |
| 5 |
4
|
simp1bi |
|- ( R e. RRExt -> ( R e. NrmRing /\ R e. DivRing ) ) |
| 6 |
5
|
simprd |
|- ( R e. RRExt -> R e. DivRing ) |