Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) = ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) |
3 |
|
eqid |
⊢ ( ℤMod ‘ 𝑅 ) = ( ℤMod ‘ 𝑅 ) |
4 |
1 2 3
|
isrrext |
⊢ ( 𝑅 ∈ ℝExt ↔ ( ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ∧ ( ( ℤMod ‘ 𝑅 ) ∈ NrmMod ∧ ( chr ‘ 𝑅 ) = 0 ) ∧ ( 𝑅 ∈ CUnifSp ∧ ( UnifSt ‘ 𝑅 ) = ( metUnif ‘ ( ( dist ‘ 𝑅 ) ↾ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑅 ) ) ) ) ) ) ) |
5 |
4
|
simp1bi |
⊢ ( 𝑅 ∈ ℝExt → ( 𝑅 ∈ NrmRing ∧ 𝑅 ∈ DivRing ) ) |
6 |
5
|
simprd |
⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ DivRing ) |