Step |
Hyp |
Ref |
Expression |
1 |
|
zssq |
|- ZZ C_ QQ |
2 |
|
0z |
|- 0 e. ZZ |
3 |
1 2
|
sselii |
|- 0 e. QQ |
4 |
|
simpl |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> R e. RRExt ) |
5 |
|
simpr |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> 0 e. QQ ) |
6 |
|
rrhqima |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) |
7 |
4 5 6
|
syl2anc |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) |
8 |
3 7
|
mpan2 |
|- ( R e. RRExt -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) |
9 |
|
rrextdrg |
|- ( R e. RRExt -> R e. DivRing ) |
10 |
|
rrextchr |
|- ( R e. RRExt -> ( chr ` R ) = 0 ) |
11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
12 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
13 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
14 |
11 12 13
|
qqh0 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |
15 |
9 10 14
|
syl2anc |
|- ( R e. RRExt -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |
16 |
8 15
|
eqtrd |
|- ( R e. RRExt -> ( ( RRHom ` R ) ` 0 ) = ( 0g ` R ) ) |