| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssq |
|- ZZ C_ QQ |
| 2 |
|
0z |
|- 0 e. ZZ |
| 3 |
1 2
|
sselii |
|- 0 e. QQ |
| 4 |
|
simpl |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> R e. RRExt ) |
| 5 |
|
simpr |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> 0 e. QQ ) |
| 6 |
|
rrhqima |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) |
| 7 |
4 5 6
|
syl2anc |
|- ( ( R e. RRExt /\ 0 e. QQ ) -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) |
| 8 |
3 7
|
mpan2 |
|- ( R e. RRExt -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) |
| 9 |
|
rrextdrg |
|- ( R e. RRExt -> R e. DivRing ) |
| 10 |
|
rrextchr |
|- ( R e. RRExt -> ( chr ` R ) = 0 ) |
| 11 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 12 |
|
eqid |
|- ( /r ` R ) = ( /r ` R ) |
| 13 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 14 |
11 12 13
|
qqh0 |
|- ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 15 |
9 10 14
|
syl2anc |
|- ( R e. RRExt -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 16 |
8 15
|
eqtrd |
|- ( R e. RRExt -> ( ( RRHom ` R ) ` 0 ) = ( 0g ` R ) ) |