| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zssq |  |-  ZZ C_ QQ | 
						
							| 2 |  | 0z |  |-  0 e. ZZ | 
						
							| 3 | 1 2 | sselii |  |-  0 e. QQ | 
						
							| 4 |  | simpl |  |-  ( ( R e. RRExt /\ 0 e. QQ ) -> R e. RRExt ) | 
						
							| 5 |  | simpr |  |-  ( ( R e. RRExt /\ 0 e. QQ ) -> 0 e. QQ ) | 
						
							| 6 |  | rrhqima |  |-  ( ( R e. RRExt /\ 0 e. QQ ) -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) | 
						
							| 7 | 4 5 6 | syl2anc |  |-  ( ( R e. RRExt /\ 0 e. QQ ) -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) | 
						
							| 8 | 3 7 | mpan2 |  |-  ( R e. RRExt -> ( ( RRHom ` R ) ` 0 ) = ( ( QQHom ` R ) ` 0 ) ) | 
						
							| 9 |  | rrextdrg |  |-  ( R e. RRExt -> R e. DivRing ) | 
						
							| 10 |  | rrextchr |  |-  ( R e. RRExt -> ( chr ` R ) = 0 ) | 
						
							| 11 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 12 |  | eqid |  |-  ( /r ` R ) = ( /r ` R ) | 
						
							| 13 |  | eqid |  |-  ( ZRHom ` R ) = ( ZRHom ` R ) | 
						
							| 14 | 11 12 13 | qqh0 |  |-  ( ( R e. DivRing /\ ( chr ` R ) = 0 ) -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) | 
						
							| 15 | 9 10 14 | syl2anc |  |-  ( R e. RRExt -> ( ( QQHom ` R ) ` 0 ) = ( 0g ` R ) ) | 
						
							| 16 | 8 15 | eqtrd |  |-  ( R e. RRExt -> ( ( RRHom ` R ) ` 0 ) = ( 0g ` R ) ) |