| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zssq | ⊢ ℤ  ⊆  ℚ | 
						
							| 2 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 3 | 1 2 | sselii | ⊢ 0  ∈  ℚ | 
						
							| 4 |  | simpl | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  0  ∈  ℚ )  →  𝑅  ∈   ℝExt  ) | 
						
							| 5 |  | simpr | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  0  ∈  ℚ )  →  0  ∈  ℚ ) | 
						
							| 6 |  | rrhqima | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  0  ∈  ℚ )  →  ( ( ℝHom ‘ 𝑅 ) ‘ 0 )  =  ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) | 
						
							| 7 | 4 5 6 | syl2anc | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  0  ∈  ℚ )  →  ( ( ℝHom ‘ 𝑅 ) ‘ 0 )  =  ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) | 
						
							| 8 | 3 7 | mpan2 | ⊢ ( 𝑅  ∈   ℝExt   →  ( ( ℝHom ‘ 𝑅 ) ‘ 0 )  =  ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) | 
						
							| 9 |  | rrextdrg | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  DivRing ) | 
						
							| 10 |  | rrextchr | ⊢ ( 𝑅  ∈   ℝExt   →  ( chr ‘ 𝑅 )  =  0 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 |  | eqid | ⊢ ( /r ‘ 𝑅 )  =  ( /r ‘ 𝑅 ) | 
						
							| 13 |  | eqid | ⊢ ( ℤRHom ‘ 𝑅 )  =  ( ℤRHom ‘ 𝑅 ) | 
						
							| 14 | 11 12 13 | qqh0 | ⊢ ( ( 𝑅  ∈  DivRing  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ( ℚHom ‘ 𝑅 ) ‘ 0 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 15 | 9 10 14 | syl2anc | ⊢ ( 𝑅  ∈   ℝExt   →  ( ( ℚHom ‘ 𝑅 ) ‘ 0 )  =  ( 0g ‘ 𝑅 ) ) | 
						
							| 16 | 8 15 | eqtrd | ⊢ ( 𝑅  ∈   ℝExt   →  ( ( ℝHom ‘ 𝑅 ) ‘ 0 )  =  ( 0g ‘ 𝑅 ) ) |