| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zssq |
⊢ ℤ ⊆ ℚ |
| 2 |
|
0z |
⊢ 0 ∈ ℤ |
| 3 |
1 2
|
sselii |
⊢ 0 ∈ ℚ |
| 4 |
|
simpl |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → 𝑅 ∈ ℝExt ) |
| 5 |
|
simpr |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → 0 ∈ ℚ ) |
| 6 |
|
rrhqima |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) |
| 7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) |
| 8 |
3 7
|
mpan2 |
⊢ ( 𝑅 ∈ ℝExt → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) |
| 9 |
|
rrextdrg |
⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ DivRing ) |
| 10 |
|
rrextchr |
⊢ ( 𝑅 ∈ ℝExt → ( chr ‘ 𝑅 ) = 0 ) |
| 11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 12 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 14 |
11 12 13
|
qqh0 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 15 |
9 10 14
|
syl2anc |
⊢ ( 𝑅 ∈ ℝExt → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 16 |
8 15
|
eqtrd |
⊢ ( 𝑅 ∈ ℝExt → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |