Step |
Hyp |
Ref |
Expression |
1 |
|
zssq |
⊢ ℤ ⊆ ℚ |
2 |
|
0z |
⊢ 0 ∈ ℤ |
3 |
1 2
|
sselii |
⊢ 0 ∈ ℚ |
4 |
|
simpl |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → 𝑅 ∈ ℝExt ) |
5 |
|
simpr |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → 0 ∈ ℚ ) |
6 |
|
rrhqima |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) |
7 |
4 5 6
|
syl2anc |
⊢ ( ( 𝑅 ∈ ℝExt ∧ 0 ∈ ℚ ) → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) |
8 |
3 7
|
mpan2 |
⊢ ( 𝑅 ∈ ℝExt → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) ) |
9 |
|
rrextdrg |
⊢ ( 𝑅 ∈ ℝExt → 𝑅 ∈ DivRing ) |
10 |
|
rrextchr |
⊢ ( 𝑅 ∈ ℝExt → ( chr ‘ 𝑅 ) = 0 ) |
11 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
12 |
|
eqid |
⊢ ( /r ‘ 𝑅 ) = ( /r ‘ 𝑅 ) |
13 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
14 |
11 12 13
|
qqh0 |
⊢ ( ( 𝑅 ∈ DivRing ∧ ( chr ‘ 𝑅 ) = 0 ) → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
15 |
9 10 14
|
syl2anc |
⊢ ( 𝑅 ∈ ℝExt → ( ( ℚHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
16 |
8 15
|
eqtrd |
⊢ ( 𝑅 ∈ ℝExt → ( ( ℝHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |