| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid | ⊢ ( topGen ‘ ran  (,) )  =  ( topGen ‘ ran  (,) ) | 
						
							| 2 |  | eqid | ⊢ ( TopOpen ‘ 𝑅 )  =  ( TopOpen ‘ 𝑅 ) | 
						
							| 3 | 1 2 | rrhval | ⊢ ( 𝑅  ∈   ℝExt   →  ( ℝHom ‘ 𝑅 )  =  ( ( ( topGen ‘ ran  (,) ) CnExt ( TopOpen ‘ 𝑅 ) ) ‘ ( ℚHom ‘ 𝑅 ) ) ) | 
						
							| 4 | 3 | fveq1d | ⊢ ( 𝑅  ∈   ℝExt   →  ( ( ℝHom ‘ 𝑅 ) ‘ 𝑄 )  =  ( ( ( ( topGen ‘ ran  (,) ) CnExt ( TopOpen ‘ 𝑅 ) ) ‘ ( ℚHom ‘ 𝑅 ) ) ‘ 𝑄 ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  ( ( ℝHom ‘ 𝑅 ) ‘ 𝑄 )  =  ( ( ( ( topGen ‘ ran  (,) ) CnExt ( TopOpen ‘ 𝑅 ) ) ‘ ( ℚHom ‘ 𝑅 ) ) ‘ 𝑄 ) ) | 
						
							| 6 |  | uniretop | ⊢ ℝ  =  ∪  ( topGen ‘ ran  (,) ) | 
						
							| 7 |  | eqid | ⊢ ∪  ( TopOpen ‘ 𝑅 )  =  ∪  ( TopOpen ‘ 𝑅 ) | 
						
							| 8 |  | retop | ⊢ ( topGen ‘ ran  (,) )  ∈  Top | 
						
							| 9 | 8 | a1i | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  ( topGen ‘ ran  (,) )  ∈  Top ) | 
						
							| 10 | 2 | rrexthaus | ⊢ ( 𝑅  ∈   ℝExt   →  ( TopOpen ‘ 𝑅 )  ∈  Haus ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  ( TopOpen ‘ 𝑅 )  ∈  Haus ) | 
						
							| 12 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  ℚ  ⊆  ℝ ) | 
						
							| 14 |  | rrextnrg | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  NrmRing ) | 
						
							| 15 |  | rrextdrg | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  DivRing ) | 
						
							| 16 | 14 15 | elind | ⊢ ( 𝑅  ∈   ℝExt   →  𝑅  ∈  ( NrmRing  ∩  DivRing ) ) | 
						
							| 17 |  | eqid | ⊢ ( ℤMod ‘ 𝑅 )  =  ( ℤMod ‘ 𝑅 ) | 
						
							| 18 | 17 | rrextnlm | ⊢ ( 𝑅  ∈   ℝExt   →  ( ℤMod ‘ 𝑅 )  ∈  NrmMod ) | 
						
							| 19 |  | rrextchr | ⊢ ( 𝑅  ∈   ℝExt   →  ( chr ‘ 𝑅 )  =  0 ) | 
						
							| 20 |  | eqid | ⊢ ( ℂfld  ↾s  ℚ )  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 21 |  | qqtopn | ⊢ ( ( TopOpen ‘ ℝfld )  ↾t  ℚ )  =  ( TopOpen ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 22 | 20 21 17 2 | qqhcn | ⊢ ( ( 𝑅  ∈  ( NrmRing  ∩  DivRing )  ∧  ( ℤMod ‘ 𝑅 )  ∈  NrmMod  ∧  ( chr ‘ 𝑅 )  =  0 )  →  ( ℚHom ‘ 𝑅 )  ∈  ( ( ( TopOpen ‘ ℝfld )  ↾t  ℚ )  Cn  ( TopOpen ‘ 𝑅 ) ) ) | 
						
							| 23 | 16 18 19 22 | syl3anc | ⊢ ( 𝑅  ∈   ℝExt   →  ( ℚHom ‘ 𝑅 )  ∈  ( ( ( TopOpen ‘ ℝfld )  ↾t  ℚ )  Cn  ( TopOpen ‘ 𝑅 ) ) ) | 
						
							| 24 |  | retopn | ⊢ ( topGen ‘ ran  (,) )  =  ( TopOpen ‘ ℝfld ) | 
						
							| 25 | 24 | eqcomi | ⊢ ( TopOpen ‘ ℝfld )  =  ( topGen ‘ ran  (,) ) | 
						
							| 26 | 25 | oveq1i | ⊢ ( ( TopOpen ‘ ℝfld )  ↾t  ℚ )  =  ( ( topGen ‘ ran  (,) )  ↾t  ℚ ) | 
						
							| 27 | 26 | oveq1i | ⊢ ( ( ( TopOpen ‘ ℝfld )  ↾t  ℚ )  Cn  ( TopOpen ‘ 𝑅 ) )  =  ( ( ( topGen ‘ ran  (,) )  ↾t  ℚ )  Cn  ( TopOpen ‘ 𝑅 ) ) | 
						
							| 28 | 23 27 | eleqtrdi | ⊢ ( 𝑅  ∈   ℝExt   →  ( ℚHom ‘ 𝑅 )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ℚ )  Cn  ( TopOpen ‘ 𝑅 ) ) ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  ( ℚHom ‘ 𝑅 )  ∈  ( ( ( topGen ‘ ran  (,) )  ↾t  ℚ )  Cn  ( TopOpen ‘ 𝑅 ) ) ) | 
						
							| 30 |  | simpr | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  𝑄  ∈  ℚ ) | 
						
							| 31 | 6 7 9 11 13 29 30 | cnextfres | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  ( ( ( ( topGen ‘ ran  (,) ) CnExt ( TopOpen ‘ 𝑅 ) ) ‘ ( ℚHom ‘ 𝑅 ) ) ‘ 𝑄 )  =  ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) ) | 
						
							| 32 | 5 31 | eqtrd | ⊢ ( ( 𝑅  ∈   ℝExt   ∧  𝑄  ∈  ℚ )  →  ( ( ℝHom ‘ 𝑅 ) ‘ 𝑄 )  =  ( ( ℚHom ‘ 𝑅 ) ‘ 𝑄 ) ) |