| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnextfres.c |
|- C = U. J |
| 2 |
|
cnextfres.b |
|- B = U. K |
| 3 |
|
cnextfres.j |
|- ( ph -> J e. Top ) |
| 4 |
|
cnextfres.k |
|- ( ph -> K e. Haus ) |
| 5 |
|
cnextfres.a |
|- ( ph -> A C_ C ) |
| 6 |
|
cnextfres.1 |
|- ( ph -> F e. ( ( J |`t A ) Cn K ) ) |
| 7 |
|
cnextfres.x |
|- ( ph -> X e. A ) |
| 8 |
|
eqid |
|- U. ( J |`t A ) = U. ( J |`t A ) |
| 9 |
8 2
|
cnf |
|- ( F e. ( ( J |`t A ) Cn K ) -> F : U. ( J |`t A ) --> B ) |
| 10 |
6 9
|
syl |
|- ( ph -> F : U. ( J |`t A ) --> B ) |
| 11 |
1
|
restuni |
|- ( ( J e. Top /\ A C_ C ) -> A = U. ( J |`t A ) ) |
| 12 |
3 5 11
|
syl2anc |
|- ( ph -> A = U. ( J |`t A ) ) |
| 13 |
12
|
feq2d |
|- ( ph -> ( F : A --> B <-> F : U. ( J |`t A ) --> B ) ) |
| 14 |
10 13
|
mpbird |
|- ( ph -> F : A --> B ) |
| 15 |
1 2
|
cnextfun |
|- ( ( ( J e. Top /\ K e. Haus ) /\ ( F : A --> B /\ A C_ C ) ) -> Fun ( ( J CnExt K ) ` F ) ) |
| 16 |
3 4 14 5 15
|
syl22anc |
|- ( ph -> Fun ( ( J CnExt K ) ` F ) ) |
| 17 |
1
|
sscls |
|- ( ( J e. Top /\ A C_ C ) -> A C_ ( ( cls ` J ) ` A ) ) |
| 18 |
3 5 17
|
syl2anc |
|- ( ph -> A C_ ( ( cls ` J ) ` A ) ) |
| 19 |
18 7
|
sseldd |
|- ( ph -> X e. ( ( cls ` J ) ` A ) ) |
| 20 |
1 2 3 5 6 7
|
flfcntr |
|- ( ph -> ( F ` X ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 21 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
| 22 |
21
|
fveq2d |
|- ( x = X -> ( ( nei ` J ) ` { x } ) = ( ( nei ` J ) ` { X } ) ) |
| 23 |
22
|
oveq1d |
|- ( x = X -> ( ( ( nei ` J ) ` { x } ) |`t A ) = ( ( ( nei ` J ) ` { X } ) |`t A ) ) |
| 24 |
23
|
oveq2d |
|- ( x = X -> ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) = ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ) |
| 25 |
24
|
fveq1d |
|- ( x = X -> ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) = ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) |
| 26 |
25
|
opeliunxp2 |
|- ( <. X , ( F ` X ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) <-> ( X e. ( ( cls ` J ) ` A ) /\ ( F ` X ) e. ( ( K fLimf ( ( ( nei ` J ) ` { X } ) |`t A ) ) ` F ) ) ) |
| 27 |
19 20 26
|
sylanbrc |
|- ( ph -> <. X , ( F ` X ) >. e. U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 28 |
|
haustop |
|- ( K e. Haus -> K e. Top ) |
| 29 |
4 28
|
syl |
|- ( ph -> K e. Top ) |
| 30 |
1 2
|
cnextfval |
|- ( ( ( J e. Top /\ K e. Top ) /\ ( F : A --> B /\ A C_ C ) ) -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 31 |
3 29 14 5 30
|
syl22anc |
|- ( ph -> ( ( J CnExt K ) ` F ) = U_ x e. ( ( cls ` J ) ` A ) ( { x } X. ( ( K fLimf ( ( ( nei ` J ) ` { x } ) |`t A ) ) ` F ) ) ) |
| 32 |
27 31
|
eleqtrrd |
|- ( ph -> <. X , ( F ` X ) >. e. ( ( J CnExt K ) ` F ) ) |
| 33 |
|
df-br |
|- ( X ( ( J CnExt K ) ` F ) ( F ` X ) <-> <. X , ( F ` X ) >. e. ( ( J CnExt K ) ` F ) ) |
| 34 |
32 33
|
sylibr |
|- ( ph -> X ( ( J CnExt K ) ` F ) ( F ` X ) ) |
| 35 |
|
funbrfv |
|- ( Fun ( ( J CnExt K ) ` F ) -> ( X ( ( J CnExt K ) ` F ) ( F ` X ) -> ( ( ( J CnExt K ) ` F ) ` X ) = ( F ` X ) ) ) |
| 36 |
16 34 35
|
sylc |
|- ( ph -> ( ( ( J CnExt K ) ` F ) ` X ) = ( F ` X ) ) |