Metamath Proof Explorer


Definition df-rrh

Description: Define the canonical homomorphism from the real numbers to any complete field, as the extension by continuity of the canonical homomorphism from the rational numbers. (Contributed by Mario Carneiro, 22-Oct-2017) (Revised by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Assertion df-rrh ℝHom = r V topGen ran . CnExt TopOpen r ℚHom r

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrh class ℝHom
1 vr setvar r
2 cvv class V
3 ctg class topGen
4 cioo class .
5 4 crn class ran .
6 5 3 cfv class topGen ran .
7 ccnext class CnExt
8 ctopn class TopOpen
9 1 cv setvar r
10 9 8 cfv class TopOpen r
11 6 10 7 co class topGen ran . CnExt TopOpen r
12 cqqh class ℚHom
13 9 12 cfv class ℚHom r
14 13 11 cfv class topGen ran . CnExt TopOpen r ℚHom r
15 1 2 14 cmpt class r V topGen ran . CnExt TopOpen r ℚHom r
16 0 15 wceq wff ℝHom = r V topGen ran . CnExt TopOpen r ℚHom r