Metamath Proof Explorer


Definition df-rrh

Description: Define the canonical homomorphism from the real numbers to any complete field, as the extension by continuity of the canonical homomorphism from the rational numbers. (Contributed by Mario Carneiro, 22-Oct-2017) (Revised by Thierry Arnoux, 23-Oct-2017)

Ref Expression
Assertion df-rrh ℝHom=rVtopGenran.CnExtTopOpenrℚHomr

Detailed syntax breakdown

Step Hyp Ref Expression
0 crrh classℝHom
1 vr setvarr
2 cvv classV
3 ctg classtopGen
4 cioo class.
5 4 crn classran.
6 5 3 cfv classtopGenran.
7 ccnext classCnExt
8 ctopn classTopOpen
9 1 cv setvarr
10 9 8 cfv classTopOpenr
11 6 10 7 co classtopGenran.CnExtTopOpenr
12 cqqh classℚHom
13 9 12 cfv classℚHomr
14 13 11 cfv classtopGenran.CnExtTopOpenrℚHomr
15 1 2 14 cmpt classrVtopGenran.CnExtTopOpenrℚHomr
16 0 15 wceq wffℝHom=rVtopGenran.CnExtTopOpenrℚHomr