Metamath Proof Explorer


Theorem rrhfe

Description: If R is an extension of RR , then the canonical homomorphism of RR into R is a function. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypothesis rrhfe.b
|- B = ( Base ` R )
Assertion rrhfe
|- ( R e. RRExt -> ( RRHom ` R ) : RR --> B )

Proof

Step Hyp Ref Expression
1 rrhfe.b
 |-  B = ( Base ` R )
2 eqid
 |-  ( ( dist ` R ) |` ( B X. B ) ) = ( ( dist ` R ) |` ( B X. B ) )
3 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
4 eqid
 |-  ( TopOpen ` R ) = ( TopOpen ` R )
5 eqid
 |-  ( ZMod ` R ) = ( ZMod ` R )
6 rrextdrg
 |-  ( R e. RRExt -> R e. DivRing )
7 rrextnrg
 |-  ( R e. RRExt -> R e. NrmRing )
8 5 rrextnlm
 |-  ( R e. RRExt -> ( ZMod ` R ) e. NrmMod )
9 rrextchr
 |-  ( R e. RRExt -> ( chr ` R ) = 0 )
10 rrextcusp
 |-  ( R e. RRExt -> R e. CUnifSp )
11 1 2 rrextust
 |-  ( R e. RRExt -> ( UnifSt ` R ) = ( metUnif ` ( ( dist ` R ) |` ( B X. B ) ) ) )
12 2 3 1 4 5 6 7 8 9 10 11 rrhf
 |-  ( R e. RRExt -> ( RRHom ` R ) : RR --> B )