Metamath Proof Explorer


Theorem rrhfe

Description: If R is an extension of RR , then the canonical homomorphism of RR into R is a function. (Contributed by Thierry Arnoux, 2-May-2018)

Ref Expression
Hypothesis rrhfe.b B=BaseR
Assertion rrhfe RℝExtℝHomR:B

Proof

Step Hyp Ref Expression
1 rrhfe.b B=BaseR
2 eqid distRB×B=distRB×B
3 eqid topGenran.=topGenran.
4 eqid TopOpenR=TopOpenR
5 eqid ℤModR=ℤModR
6 rrextdrg RℝExtRDivRing
7 rrextnrg RℝExtRNrmRing
8 5 rrextnlm RℝExtℤModRNrmMod
9 rrextchr RℝExtchrR=0
10 rrextcusp RℝExtRCUnifSp
11 1 2 rrextust RℝExtUnifStR=metUnifdistRB×B
12 2 3 1 4 5 6 7 8 9 10 11 rrhf RℝExtℝHomR:B