Description: If R is an extension of RR , then the canonical homomorphism of RR into R is a function. (Contributed by Thierry Arnoux, 2-May-2018)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rrhfe.b | |
|
Assertion | rrhfe | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrhfe.b | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | rrextdrg | |
|
7 | rrextnrg | |
|
8 | 5 | rrextnlm | |
9 | rrextchr | |
|
10 | rrextcusp | |
|
11 | 1 2 | rrextust | |
12 | 2 3 1 4 5 6 7 8 9 10 11 | rrhf | |