Metamath Proof Explorer


Theorem slmd0vcl

Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmd0vcl.v
|- V = ( Base ` W )
slmd0vcl.z
|- .0. = ( 0g ` W )
Assertion slmd0vcl
|- ( W e. SLMod -> .0. e. V )

Proof

Step Hyp Ref Expression
1 slmd0vcl.v
 |-  V = ( Base ` W )
2 slmd0vcl.z
 |-  .0. = ( 0g ` W )
3 slmdmnd
 |-  ( W e. SLMod -> W e. Mnd )
4 1 2 mndidcl
 |-  ( W e. Mnd -> .0. e. V )
5 3 4 syl
 |-  ( W e. SLMod -> .0. e. V )