Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | slmd0vcl.v | |- V = ( Base ` W ) |
|
slmd0vcl.z | |- .0. = ( 0g ` W ) |
||
Assertion | slmd0vcl | |- ( W e. SLMod -> .0. e. V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmd0vcl.v | |- V = ( Base ` W ) |
|
2 | slmd0vcl.z | |- .0. = ( 0g ` W ) |
|
3 | slmdmnd | |- ( W e. SLMod -> W e. Mnd ) |
|
4 | 1 2 | mndidcl | |- ( W e. Mnd -> .0. e. V ) |
5 | 3 4 | syl | |- ( W e. SLMod -> .0. e. V ) |