Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slmd0vcl.v | |- V = ( Base ` W ) | |
| slmd0vcl.z | |- .0. = ( 0g ` W ) | ||
| Assertion | slmd0vcl | |- ( W e. SLMod -> .0. e. V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slmd0vcl.v | |- V = ( Base ` W ) | |
| 2 | slmd0vcl.z | |- .0. = ( 0g ` W ) | |
| 3 | slmdmnd | |- ( W e. SLMod -> W e. Mnd ) | |
| 4 | 1 2 | mndidcl | |- ( W e. Mnd -> .0. e. V ) | 
| 5 | 3 4 | syl | |- ( W e. SLMod -> .0. e. V ) |