Description: Left identity law for the zero vector. ( hvaddlid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slmd0vlid.v | |- V = ( Base ` W ) | |
| slmd0vlid.a | |- .+ = ( +g ` W ) | ||
| slmd0vlid.z | |- .0. = ( 0g ` W ) | ||
| Assertion | slmd0vlid | |- ( ( W e. SLMod /\ X e. V ) -> ( .0. .+ X ) = X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slmd0vlid.v | |- V = ( Base ` W ) | |
| 2 | slmd0vlid.a | |- .+ = ( +g ` W ) | |
| 3 | slmd0vlid.z | |- .0. = ( 0g ` W ) | |
| 4 | slmdmnd | |- ( W e. SLMod -> W e. Mnd ) | |
| 5 | 1 2 3 | mndlid | |- ( ( W e. Mnd /\ X e. V ) -> ( .0. .+ X ) = X ) | 
| 6 | 4 5 | sylan | |- ( ( W e. SLMod /\ X e. V ) -> ( .0. .+ X ) = X ) |