Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Thierry Arnoux Algebra Semiring left modules slmd0vlid  
				
		 
		
			
		 
		Description:   Left identity law for the zero vector.  ( hvaddlid  analog.)
       (Contributed by NM , 10-Jan-2014)   (Revised by Mario Carneiro , 19-Jun-2014)   (Revised by Thierry Arnoux , 1-Apr-2018) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						slmd0vlid.v   ⊢   V  =  Base  W      
					 
					
						slmd0vlid.a   ⊢   +  ˙ =  +  W      
					 
					
						slmd0vlid.z   ⊢   0  ˙ =  0  W      
					 
				
					Assertion 
					slmd0vlid    ⊢    W  ∈  SLMod    ∧   X  ∈  V     →   0  ˙ +  ˙ X =  X         
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							slmd0vlid.v  ⊢   V  =  Base  W      
						
							2 
								
							 
							slmd0vlid.a  ⊢   +  ˙ =  +  W      
						
							3 
								
							 
							slmd0vlid.z  ⊢   0  ˙ =  0  W      
						
							4 
								
							 
							slmdmnd   ⊢   W  ∈  SLMod    →   W  ∈  Mnd         
						
							5 
								1  2  3 
							 
							mndlid   ⊢    W  ∈  Mnd    ∧   X  ∈  V     →   0  ˙ +  ˙ X =  X         
						
							6 
								4  5 
							 
							sylan   ⊢    W  ∈  SLMod    ∧   X  ∈  V     →   0  ˙ +  ˙ X =  X