Database SUPPLEMENTARY MATERIAL (USERS' MATHBOXES) Mathbox for Thierry Arnoux Algebra Semiring left modules slmd0vlid  
				
		 
		
			
		 
		Description:   Left identity law for the zero vector.  ( hvaddlid  analog.)
       (Contributed by NM , 10-Jan-2014)   (Revised by Mario Carneiro , 19-Jun-2014)   (Revised by Thierry Arnoux , 1-Apr-2018) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						slmd0vlid.v ⊢  𝑉   =  ( Base ‘ 𝑊  )  
					
						slmd0vlid.a ⊢   +    =  ( +g  ‘ 𝑊  )  
					
						slmd0vlid.z ⊢   0    =  ( 0g  ‘ 𝑊  )  
				
					Assertion 
					slmd0vlid ⊢   ( ( 𝑊   ∈  SLMod  ∧  𝑋   ∈  𝑉  )  →  (  0    +   𝑋  )  =  𝑋  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							slmd0vlid.v ⊢  𝑉   =  ( Base ‘ 𝑊  )  
						
							2 
								
							 
							slmd0vlid.a ⊢   +    =  ( +g  ‘ 𝑊  )  
						
							3 
								
							 
							slmd0vlid.z ⊢   0    =  ( 0g  ‘ 𝑊  )  
						
							4 
								
							 
							slmdmnd ⊢  ( 𝑊   ∈  SLMod  →  𝑊   ∈  Mnd )  
						
							5 
								1  2  3 
							 
							mndlid ⊢  ( ( 𝑊   ∈  Mnd  ∧  𝑋   ∈  𝑉  )  →  (  0    +   𝑋  )  =  𝑋  )  
						
							6 
								4  5 
							 
							sylan ⊢  ( ( 𝑊   ∈  SLMod  ∧  𝑋   ∈  𝑉  )  →  (  0    +   𝑋  )  =  𝑋  )