Metamath Proof Explorer


Theorem slmdmnd

Description: A semimodule is a monoid. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion slmdmnd ( 𝑊 ∈ SLMod → 𝑊 ∈ Mnd )

Proof

Step Hyp Ref Expression
1 slmdcmn ( 𝑊 ∈ SLMod → 𝑊 ∈ CMnd )
2 cmnmnd ( 𝑊 ∈ CMnd → 𝑊 ∈ Mnd )
3 1 2 syl ( 𝑊 ∈ SLMod → 𝑊 ∈ Mnd )