Metamath Proof Explorer


Theorem slmdcmn

Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion slmdcmn ( 𝑊 ∈ SLMod → 𝑊 ∈ CMnd )

Proof

Step Hyp Ref Expression
1 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
2 eqid ( +g𝑊 ) = ( +g𝑊 )
3 eqid ( ·𝑠𝑊 ) = ( ·𝑠𝑊 )
4 eqid ( 0g𝑊 ) = ( 0g𝑊 )
5 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
6 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
7 eqid ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) )
8 eqid ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) )
9 eqid ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) )
10 eqid ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) )
11 1 2 3 4 5 6 7 8 9 10 isslmd ( 𝑊 ∈ SLMod ↔ ( 𝑊 ∈ CMnd ∧ ( Scalar ‘ 𝑊 ) ∈ SRing ∧ ∀ 𝑤 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑧 ( ·𝑠𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑧 ( ·𝑠𝑊 ) ( 𝑦 ( +g𝑊 ) 𝑥 ) ) = ( ( 𝑧 ( ·𝑠𝑊 ) 𝑦 ) ( +g𝑊 ) ( 𝑧 ( ·𝑠𝑊 ) 𝑥 ) ) ∧ ( ( 𝑤 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) ( ·𝑠𝑊 ) 𝑦 ) = ( ( 𝑤 ( ·𝑠𝑊 ) 𝑦 ) ( +g𝑊 ) ( 𝑧 ( ·𝑠𝑊 ) 𝑦 ) ) ) ∧ ( ( ( 𝑤 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) ( ·𝑠𝑊 ) 𝑦 ) = ( 𝑤 ( ·𝑠𝑊 ) ( 𝑧 ( ·𝑠𝑊 ) 𝑦 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑦 ) = 𝑦 ∧ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠𝑊 ) 𝑦 ) = ( 0g𝑊 ) ) ) ) )
12 11 simp1bi ( 𝑊 ∈ SLMod → 𝑊 ∈ CMnd )