| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 2 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 6 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
|
eqid |
⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) ) = ( +g ‘ ( Scalar ‘ 𝑊 ) ) |
| 8 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) ) = ( .r ‘ ( Scalar ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
1 2 3 4 5 6 7 8 9 10
|
isslmd |
⊢ ( 𝑊 ∈ SLMod ↔ ( 𝑊 ∈ CMnd ∧ ( Scalar ‘ 𝑊 ) ∈ SRing ∧ ∀ 𝑤 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑧 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥 ∈ ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ( ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ∈ ( Base ‘ 𝑊 ) ∧ ( 𝑧 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) ) = ( ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑥 ) ) ∧ ( ( 𝑤 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( ( 𝑤 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ) ∧ ( ( ( 𝑤 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑧 ) ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 𝑤 ( ·𝑠 ‘ 𝑊 ) ( 𝑧 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ) ∧ ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = 𝑦 ∧ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( ·𝑠 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ 𝑊 ) ) ) ) ) |
| 12 |
11
|
simp1bi |
⊢ ( 𝑊 ∈ SLMod → 𝑊 ∈ CMnd ) |