Metamath Proof Explorer


Theorem slmdcmn

Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion slmdcmn W SLMod W CMnd

Proof

Step Hyp Ref Expression
1 eqid Base W = Base W
2 eqid + W = + W
3 eqid W = W
4 eqid 0 W = 0 W
5 eqid Scalar W = Scalar W
6 eqid Base Scalar W = Base Scalar W
7 eqid + Scalar W = + Scalar W
8 eqid Scalar W = Scalar W
9 eqid 1 Scalar W = 1 Scalar W
10 eqid 0 Scalar W = 0 Scalar W
11 1 2 3 4 5 6 7 8 9 10 isslmd W SLMod W CMnd Scalar W SRing w Base Scalar W z Base Scalar W x Base W y Base W z W y Base W z W y + W x = z W y + W z W x w + Scalar W z W y = w W y + W z W y w Scalar W z W y = w W z W y 1 Scalar W W y = y 0 Scalar W W y = 0 W
12 11 simp1bi W SLMod W CMnd