Metamath Proof Explorer


Theorem slmdcmn

Description: A semimodule is a commutative monoid. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Assertion slmdcmn WSLModWCMnd

Proof

Step Hyp Ref Expression
1 eqid BaseW=BaseW
2 eqid +W=+W
3 eqid W=W
4 eqid 0W=0W
5 eqid ScalarW=ScalarW
6 eqid BaseScalarW=BaseScalarW
7 eqid +ScalarW=+ScalarW
8 eqid ScalarW=ScalarW
9 eqid 1ScalarW=1ScalarW
10 eqid 0ScalarW=0ScalarW
11 1 2 3 4 5 6 7 8 9 10 isslmd WSLModWCMndScalarWSRingwBaseScalarWzBaseScalarWxBaseWyBaseWzWyBaseWzWy+Wx=zWy+WzWxw+ScalarWzWy=wWy+WzWywScalarWzWy=wWzWy1ScalarWWy=y0ScalarWWy=0W
12 11 simp1bi WSLModWCMnd