| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 2 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 3 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 4 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 5 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 6 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 7 |  | eqid |  |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) | 
						
							| 8 |  | eqid |  |-  ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) | 
						
							| 9 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 10 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | isslmd |  |-  ( W e. SLMod <-> ( W e. CMnd /\ ( Scalar ` W ) e. SRing /\ A. w e. ( Base ` ( Scalar ` W ) ) A. z e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. y e. ( Base ` W ) ( ( ( z ( .s ` W ) y ) e. ( Base ` W ) /\ ( z ( .s ` W ) ( y ( +g ` W ) x ) ) = ( ( z ( .s ` W ) y ) ( +g ` W ) ( z ( .s ` W ) x ) ) /\ ( ( w ( +g ` ( Scalar ` W ) ) z ) ( .s ` W ) y ) = ( ( w ( .s ` W ) y ) ( +g ` W ) ( z ( .s ` W ) y ) ) ) /\ ( ( ( w ( .r ` ( Scalar ` W ) ) z ) ( .s ` W ) y ) = ( w ( .s ` W ) ( z ( .s ` W ) y ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) y ) = y /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) y ) = ( 0g ` W ) ) ) ) ) | 
						
							| 12 | 11 | simp1bi |  |-  ( W e. SLMod -> W e. CMnd ) |