| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isslmd.v |
|- V = ( Base ` W ) |
| 2 |
|
isslmd.a |
|- .+ = ( +g ` W ) |
| 3 |
|
isslmd.s |
|- .x. = ( .s ` W ) |
| 4 |
|
isslmd.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
isslmd.f |
|- F = ( Scalar ` W ) |
| 6 |
|
isslmd.k |
|- K = ( Base ` F ) |
| 7 |
|
isslmd.p |
|- .+^ = ( +g ` F ) |
| 8 |
|
isslmd.t |
|- .X. = ( .r ` F ) |
| 9 |
|
isslmd.u |
|- .1. = ( 1r ` F ) |
| 10 |
|
isslmd.o |
|- O = ( 0g ` F ) |
| 11 |
|
fvex |
|- ( Base ` g ) e. _V |
| 12 |
|
fvex |
|- ( +g ` g ) e. _V |
| 13 |
|
fvex |
|- ( .s ` g ) e. _V |
| 14 |
|
fvex |
|- ( Scalar ` g ) e. _V |
| 15 |
|
fvex |
|- ( Base ` f ) e. _V |
| 16 |
|
fvex |
|- ( +g ` f ) e. _V |
| 17 |
|
fvex |
|- ( .r ` f ) e. _V |
| 18 |
|
simp1 |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> k = ( Base ` f ) ) |
| 19 |
|
simp2 |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> p = ( +g ` f ) ) |
| 20 |
19
|
oveqd |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( q p r ) = ( q ( +g ` f ) r ) ) |
| 21 |
20
|
oveq1d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( q p r ) s w ) = ( ( q ( +g ` f ) r ) s w ) ) |
| 22 |
21
|
eqeq1d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) <-> ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) ) |
| 23 |
22
|
3anbi3d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) <-> ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) ) ) |
| 24 |
|
simp3 |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> t = ( .r ` f ) ) |
| 25 |
24
|
oveqd |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( q t r ) = ( q ( .r ` f ) r ) ) |
| 26 |
25
|
oveq1d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( q t r ) s w ) = ( ( q ( .r ` f ) r ) s w ) ) |
| 27 |
26
|
eqeq1d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( ( q t r ) s w ) = ( q s ( r s w ) ) <-> ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) ) ) |
| 28 |
27
|
3anbi1d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) <-> ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) |
| 29 |
23 28
|
anbi12d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) ) |
| 30 |
29
|
2ralbidv |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) ) |
| 31 |
18 30
|
raleqbidv |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> A. r e. ( Base ` f ) A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) ) |
| 32 |
18 31
|
raleqbidv |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> A. q e. ( Base ` f ) A. r e. ( Base ` f ) A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) ) |
| 33 |
32
|
anbi2d |
|- ( ( k = ( Base ` f ) /\ p = ( +g ` f ) /\ t = ( .r ` f ) ) -> ( ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( f e. SRing /\ A. q e. ( Base ` f ) A. r e. ( Base ` f ) A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) ) ) |
| 34 |
15 16 17 33
|
sbc3ie |
|- ( [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( f e. SRing /\ A. q e. ( Base ` f ) A. r e. ( Base ` f ) A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) ) |
| 35 |
|
simpr |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> f = ( Scalar ` g ) ) |
| 36 |
35
|
eleq1d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( f e. SRing <-> ( Scalar ` g ) e. SRing ) ) |
| 37 |
35
|
fveq2d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( Base ` f ) = ( Base ` ( Scalar ` g ) ) ) |
| 38 |
|
simpl |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> s = ( .s ` g ) ) |
| 39 |
38
|
oveqd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( r s w ) = ( r ( .s ` g ) w ) ) |
| 40 |
39
|
eleq1d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( r s w ) e. v <-> ( r ( .s ` g ) w ) e. v ) ) |
| 41 |
38
|
oveqd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( r s ( w a x ) ) = ( r ( .s ` g ) ( w a x ) ) ) |
| 42 |
38
|
oveqd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( r s x ) = ( r ( .s ` g ) x ) ) |
| 43 |
39 42
|
oveq12d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( r s w ) a ( r s x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) ) |
| 44 |
41 43
|
eqeq12d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) <-> ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) ) ) |
| 45 |
35
|
fveq2d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( +g ` f ) = ( +g ` ( Scalar ` g ) ) ) |
| 46 |
45
|
oveqd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( q ( +g ` f ) r ) = ( q ( +g ` ( Scalar ` g ) ) r ) ) |
| 47 |
|
eqidd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> w = w ) |
| 48 |
38 46 47
|
oveq123d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( q ( +g ` f ) r ) s w ) = ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) ) |
| 49 |
38
|
oveqd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( q s w ) = ( q ( .s ` g ) w ) ) |
| 50 |
49 39
|
oveq12d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( q s w ) a ( r s w ) ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) |
| 51 |
48 50
|
eqeq12d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) <-> ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) ) |
| 52 |
40 44 51
|
3anbi123d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) <-> ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) ) ) |
| 53 |
35
|
fveq2d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( .r ` f ) = ( .r ` ( Scalar ` g ) ) ) |
| 54 |
53
|
oveqd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( q ( .r ` f ) r ) = ( q ( .r ` ( Scalar ` g ) ) r ) ) |
| 55 |
38 54 47
|
oveq123d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( q ( .r ` f ) r ) s w ) = ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) ) |
| 56 |
|
eqidd |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> q = q ) |
| 57 |
38 56 39
|
oveq123d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( q s ( r s w ) ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) ) |
| 58 |
55 57
|
eqeq12d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) <-> ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) ) ) |
| 59 |
35
|
fveq2d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( 1r ` f ) = ( 1r ` ( Scalar ` g ) ) ) |
| 60 |
38 59 47
|
oveq123d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( 1r ` f ) s w ) = ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) ) |
| 61 |
60
|
eqeq1d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( ( 1r ` f ) s w ) = w <-> ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w ) ) |
| 62 |
35
|
fveq2d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( 0g ` f ) = ( 0g ` ( Scalar ` g ) ) ) |
| 63 |
38 62 47
|
oveq123d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( 0g ` f ) s w ) = ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) ) |
| 64 |
63
|
eqeq1d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( ( 0g ` f ) s w ) = ( 0g ` g ) <-> ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) |
| 65 |
58 61 64
|
3anbi123d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) <-> ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) |
| 66 |
52 65
|
anbi12d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 67 |
66
|
2ralbidv |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 68 |
37 67
|
raleqbidv |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( A. r e. ( Base ` f ) A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> A. r e. ( Base ` ( Scalar ` g ) ) A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 69 |
37 68
|
raleqbidv |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( A. q e. ( Base ` f ) A. r e. ( Base ` f ) A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) <-> A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 70 |
36 69
|
anbi12d |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( ( f e. SRing /\ A. q e. ( Base ` f ) A. r e. ( Base ` f ) A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q ( +g ` f ) r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q ( .r ` f ) r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) ) |
| 71 |
34 70
|
bitrid |
|- ( ( s = ( .s ` g ) /\ f = ( Scalar ` g ) ) -> ( [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) ) |
| 72 |
13 14 71
|
sbc2ie |
|- ( [. ( .s ` g ) / s ]. [. ( Scalar ` g ) / f ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 73 |
|
simpl |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> v = ( Base ` g ) ) |
| 74 |
73
|
eleq2d |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( r ( .s ` g ) w ) e. v <-> ( r ( .s ` g ) w ) e. ( Base ` g ) ) ) |
| 75 |
|
simpr |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> a = ( +g ` g ) ) |
| 76 |
75
|
oveqd |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( w a x ) = ( w ( +g ` g ) x ) ) |
| 77 |
76
|
oveq2d |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( r ( .s ` g ) ( w a x ) ) = ( r ( .s ` g ) ( w ( +g ` g ) x ) ) ) |
| 78 |
75
|
oveqd |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) ) |
| 79 |
77 78
|
eqeq12d |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) <-> ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) ) ) |
| 80 |
75
|
oveqd |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) |
| 81 |
80
|
eqeq2d |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) <-> ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) ) |
| 82 |
74 79 81
|
3anbi123d |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) <-> ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) ) ) |
| 83 |
82
|
anbi1d |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 84 |
73 83
|
raleqbidv |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 85 |
73 84
|
raleqbidv |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 86 |
85
|
2ralbidv |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 87 |
86
|
anbi2d |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. v A. w e. v ( ( ( r ( .s ` g ) w ) e. v /\ ( r ( .s ` g ) ( w a x ) ) = ( ( r ( .s ` g ) w ) a ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) a ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) <-> ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) ) |
| 88 |
72 87
|
bitrid |
|- ( ( v = ( Base ` g ) /\ a = ( +g ` g ) ) -> ( [. ( .s ` g ) / s ]. [. ( Scalar ` g ) / f ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) ) |
| 89 |
11 12 88
|
sbc2ie |
|- ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( .s ` g ) / s ]. [. ( Scalar ` g ) / f ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) ) |
| 90 |
|
fveq2 |
|- ( g = W -> ( Scalar ` g ) = ( Scalar ` W ) ) |
| 91 |
90 5
|
eqtr4di |
|- ( g = W -> ( Scalar ` g ) = F ) |
| 92 |
91
|
eleq1d |
|- ( g = W -> ( ( Scalar ` g ) e. SRing <-> F e. SRing ) ) |
| 93 |
91
|
fveq2d |
|- ( g = W -> ( Base ` ( Scalar ` g ) ) = ( Base ` F ) ) |
| 94 |
93 6
|
eqtr4di |
|- ( g = W -> ( Base ` ( Scalar ` g ) ) = K ) |
| 95 |
|
fveq2 |
|- ( g = W -> ( Base ` g ) = ( Base ` W ) ) |
| 96 |
95 1
|
eqtr4di |
|- ( g = W -> ( Base ` g ) = V ) |
| 97 |
|
fveq2 |
|- ( g = W -> ( .s ` g ) = ( .s ` W ) ) |
| 98 |
97 3
|
eqtr4di |
|- ( g = W -> ( .s ` g ) = .x. ) |
| 99 |
98
|
oveqd |
|- ( g = W -> ( r ( .s ` g ) w ) = ( r .x. w ) ) |
| 100 |
99 96
|
eleq12d |
|- ( g = W -> ( ( r ( .s ` g ) w ) e. ( Base ` g ) <-> ( r .x. w ) e. V ) ) |
| 101 |
|
eqidd |
|- ( g = W -> r = r ) |
| 102 |
|
fveq2 |
|- ( g = W -> ( +g ` g ) = ( +g ` W ) ) |
| 103 |
102 2
|
eqtr4di |
|- ( g = W -> ( +g ` g ) = .+ ) |
| 104 |
103
|
oveqd |
|- ( g = W -> ( w ( +g ` g ) x ) = ( w .+ x ) ) |
| 105 |
98 101 104
|
oveq123d |
|- ( g = W -> ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( r .x. ( w .+ x ) ) ) |
| 106 |
98
|
oveqd |
|- ( g = W -> ( r ( .s ` g ) x ) = ( r .x. x ) ) |
| 107 |
103 99 106
|
oveq123d |
|- ( g = W -> ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) ) |
| 108 |
105 107
|
eqeq12d |
|- ( g = W -> ( ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) <-> ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) ) ) |
| 109 |
91
|
fveq2d |
|- ( g = W -> ( +g ` ( Scalar ` g ) ) = ( +g ` F ) ) |
| 110 |
109 7
|
eqtr4di |
|- ( g = W -> ( +g ` ( Scalar ` g ) ) = .+^ ) |
| 111 |
110
|
oveqd |
|- ( g = W -> ( q ( +g ` ( Scalar ` g ) ) r ) = ( q .+^ r ) ) |
| 112 |
|
eqidd |
|- ( g = W -> w = w ) |
| 113 |
98 111 112
|
oveq123d |
|- ( g = W -> ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q .+^ r ) .x. w ) ) |
| 114 |
98
|
oveqd |
|- ( g = W -> ( q ( .s ` g ) w ) = ( q .x. w ) ) |
| 115 |
103 114 99
|
oveq123d |
|- ( g = W -> ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) |
| 116 |
113 115
|
eqeq12d |
|- ( g = W -> ( ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) <-> ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) ) |
| 117 |
100 108 116
|
3anbi123d |
|- ( g = W -> ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) <-> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) ) ) |
| 118 |
91
|
fveq2d |
|- ( g = W -> ( .r ` ( Scalar ` g ) ) = ( .r ` F ) ) |
| 119 |
118 8
|
eqtr4di |
|- ( g = W -> ( .r ` ( Scalar ` g ) ) = .X. ) |
| 120 |
119
|
oveqd |
|- ( g = W -> ( q ( .r ` ( Scalar ` g ) ) r ) = ( q .X. r ) ) |
| 121 |
98 120 112
|
oveq123d |
|- ( g = W -> ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q .X. r ) .x. w ) ) |
| 122 |
|
eqidd |
|- ( g = W -> q = q ) |
| 123 |
98 122 99
|
oveq123d |
|- ( g = W -> ( q ( .s ` g ) ( r ( .s ` g ) w ) ) = ( q .x. ( r .x. w ) ) ) |
| 124 |
121 123
|
eqeq12d |
|- ( g = W -> ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) <-> ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) ) ) |
| 125 |
91
|
fveq2d |
|- ( g = W -> ( 1r ` ( Scalar ` g ) ) = ( 1r ` F ) ) |
| 126 |
125 9
|
eqtr4di |
|- ( g = W -> ( 1r ` ( Scalar ` g ) ) = .1. ) |
| 127 |
98 126 112
|
oveq123d |
|- ( g = W -> ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( .1. .x. w ) ) |
| 128 |
127
|
eqeq1d |
|- ( g = W -> ( ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w <-> ( .1. .x. w ) = w ) ) |
| 129 |
91
|
fveq2d |
|- ( g = W -> ( 0g ` ( Scalar ` g ) ) = ( 0g ` F ) ) |
| 130 |
129 10
|
eqtr4di |
|- ( g = W -> ( 0g ` ( Scalar ` g ) ) = O ) |
| 131 |
98 130 112
|
oveq123d |
|- ( g = W -> ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( O .x. w ) ) |
| 132 |
|
fveq2 |
|- ( g = W -> ( 0g ` g ) = ( 0g ` W ) ) |
| 133 |
132 4
|
eqtr4di |
|- ( g = W -> ( 0g ` g ) = .0. ) |
| 134 |
131 133
|
eqeq12d |
|- ( g = W -> ( ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) <-> ( O .x. w ) = .0. ) ) |
| 135 |
124 128 134
|
3anbi123d |
|- ( g = W -> ( ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) <-> ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) |
| 136 |
117 135
|
anbi12d |
|- ( g = W -> ( ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
| 137 |
96 136
|
raleqbidv |
|- ( g = W -> ( A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
| 138 |
96 137
|
raleqbidv |
|- ( g = W -> ( A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
| 139 |
94 138
|
raleqbidv |
|- ( g = W -> ( A. r e. ( Base ` ( Scalar ` g ) ) A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
| 140 |
94 139
|
raleqbidv |
|- ( g = W -> ( A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) <-> A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
| 141 |
92 140
|
anbi12d |
|- ( g = W -> ( ( ( Scalar ` g ) e. SRing /\ A. q e. ( Base ` ( Scalar ` g ) ) A. r e. ( Base ` ( Scalar ` g ) ) A. x e. ( Base ` g ) A. w e. ( Base ` g ) ( ( ( r ( .s ` g ) w ) e. ( Base ` g ) /\ ( r ( .s ` g ) ( w ( +g ` g ) x ) ) = ( ( r ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) x ) ) /\ ( ( q ( +g ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( ( q ( .s ` g ) w ) ( +g ` g ) ( r ( .s ` g ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` g ) ) r ) ( .s ` g ) w ) = ( q ( .s ` g ) ( r ( .s ` g ) w ) ) /\ ( ( 1r ` ( Scalar ` g ) ) ( .s ` g ) w ) = w /\ ( ( 0g ` ( Scalar ` g ) ) ( .s ` g ) w ) = ( 0g ` g ) ) ) ) <-> ( F e. SRing /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) ) |
| 142 |
89 141
|
bitrid |
|- ( g = W -> ( [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( .s ` g ) / s ]. [. ( Scalar ` g ) / f ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) <-> ( F e. SRing /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) ) |
| 143 |
|
df-slmd |
|- SLMod = { g e. CMnd | [. ( Base ` g ) / v ]. [. ( +g ` g ) / a ]. [. ( .s ` g ) / s ]. [. ( Scalar ` g ) / f ]. [. ( Base ` f ) / k ]. [. ( +g ` f ) / p ]. [. ( .r ` f ) / t ]. ( f e. SRing /\ A. q e. k A. r e. k A. x e. v A. w e. v ( ( ( r s w ) e. v /\ ( r s ( w a x ) ) = ( ( r s w ) a ( r s x ) ) /\ ( ( q p r ) s w ) = ( ( q s w ) a ( r s w ) ) ) /\ ( ( ( q t r ) s w ) = ( q s ( r s w ) ) /\ ( ( 1r ` f ) s w ) = w /\ ( ( 0g ` f ) s w ) = ( 0g ` g ) ) ) ) } |
| 144 |
142 143
|
elrab2 |
|- ( W e. SLMod <-> ( W e. CMnd /\ ( F e. SRing /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) ) |
| 145 |
|
3anass |
|- ( ( W e. CMnd /\ F e. SRing /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) <-> ( W e. CMnd /\ ( F e. SRing /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) ) |
| 146 |
144 145
|
bitr4i |
|- ( W e. SLMod <-> ( W e. CMnd /\ F e. SRing /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |