Step |
Hyp |
Ref |
Expression |
1 |
|
isslmd.v |
|- V = ( Base ` W ) |
2 |
|
isslmd.a |
|- .+ = ( +g ` W ) |
3 |
|
isslmd.s |
|- .x. = ( .s ` W ) |
4 |
|
isslmd.0 |
|- .0. = ( 0g ` W ) |
5 |
|
isslmd.f |
|- F = ( Scalar ` W ) |
6 |
|
isslmd.k |
|- K = ( Base ` F ) |
7 |
|
isslmd.p |
|- .+^ = ( +g ` F ) |
8 |
|
isslmd.t |
|- .X. = ( .r ` F ) |
9 |
|
isslmd.u |
|- .1. = ( 1r ` F ) |
10 |
|
isslmd.o |
|- O = ( 0g ` F ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
isslmd |
|- ( W e. SLMod <-> ( W e. CMnd /\ F e. SRing /\ A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
12 |
11
|
simp3bi |
|- ( W e. SLMod -> A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) |
13 |
|
oveq1 |
|- ( q = Q -> ( q .+^ r ) = ( Q .+^ r ) ) |
14 |
13
|
oveq1d |
|- ( q = Q -> ( ( q .+^ r ) .x. w ) = ( ( Q .+^ r ) .x. w ) ) |
15 |
|
oveq1 |
|- ( q = Q -> ( q .x. w ) = ( Q .x. w ) ) |
16 |
15
|
oveq1d |
|- ( q = Q -> ( ( q .x. w ) .+ ( r .x. w ) ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) |
17 |
14 16
|
eqeq12d |
|- ( q = Q -> ( ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) <-> ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) ) |
18 |
17
|
3anbi3d |
|- ( q = Q -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) <-> ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) ) ) |
19 |
|
oveq1 |
|- ( q = Q -> ( q .X. r ) = ( Q .X. r ) ) |
20 |
19
|
oveq1d |
|- ( q = Q -> ( ( q .X. r ) .x. w ) = ( ( Q .X. r ) .x. w ) ) |
21 |
|
oveq1 |
|- ( q = Q -> ( q .x. ( r .x. w ) ) = ( Q .x. ( r .x. w ) ) ) |
22 |
20 21
|
eqeq12d |
|- ( q = Q -> ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) <-> ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) ) ) |
23 |
22
|
3anbi1d |
|- ( q = Q -> ( ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) <-> ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) |
24 |
18 23
|
anbi12d |
|- ( q = Q -> ( ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) <-> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
25 |
24
|
2ralbidv |
|- ( q = Q -> ( A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) <-> A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
26 |
|
oveq1 |
|- ( r = R -> ( r .x. w ) = ( R .x. w ) ) |
27 |
26
|
eleq1d |
|- ( r = R -> ( ( r .x. w ) e. V <-> ( R .x. w ) e. V ) ) |
28 |
|
oveq1 |
|- ( r = R -> ( r .x. ( w .+ x ) ) = ( R .x. ( w .+ x ) ) ) |
29 |
|
oveq1 |
|- ( r = R -> ( r .x. x ) = ( R .x. x ) ) |
30 |
26 29
|
oveq12d |
|- ( r = R -> ( ( r .x. w ) .+ ( r .x. x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) ) |
31 |
28 30
|
eqeq12d |
|- ( r = R -> ( ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) <-> ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) ) ) |
32 |
|
oveq2 |
|- ( r = R -> ( Q .+^ r ) = ( Q .+^ R ) ) |
33 |
32
|
oveq1d |
|- ( r = R -> ( ( Q .+^ r ) .x. w ) = ( ( Q .+^ R ) .x. w ) ) |
34 |
26
|
oveq2d |
|- ( r = R -> ( ( Q .x. w ) .+ ( r .x. w ) ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) |
35 |
33 34
|
eqeq12d |
|- ( r = R -> ( ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) <-> ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) ) |
36 |
27 31 35
|
3anbi123d |
|- ( r = R -> ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) <-> ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) ) ) |
37 |
|
oveq2 |
|- ( r = R -> ( Q .X. r ) = ( Q .X. R ) ) |
38 |
37
|
oveq1d |
|- ( r = R -> ( ( Q .X. r ) .x. w ) = ( ( Q .X. R ) .x. w ) ) |
39 |
26
|
oveq2d |
|- ( r = R -> ( Q .x. ( r .x. w ) ) = ( Q .x. ( R .x. w ) ) ) |
40 |
38 39
|
eqeq12d |
|- ( r = R -> ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) <-> ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) ) ) |
41 |
40
|
3anbi1d |
|- ( r = R -> ( ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) <-> ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) |
42 |
36 41
|
anbi12d |
|- ( r = R -> ( ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) <-> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
43 |
42
|
2ralbidv |
|- ( r = R -> ( A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( Q .+^ r ) .x. w ) = ( ( Q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( Q .X. r ) .x. w ) = ( Q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) <-> A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
44 |
25 43
|
rspc2v |
|- ( ( Q e. K /\ R e. K ) -> ( A. q e. K A. r e. K A. x e. V A. w e. V ( ( ( r .x. w ) e. V /\ ( r .x. ( w .+ x ) ) = ( ( r .x. w ) .+ ( r .x. x ) ) /\ ( ( q .+^ r ) .x. w ) = ( ( q .x. w ) .+ ( r .x. w ) ) ) /\ ( ( ( q .X. r ) .x. w ) = ( q .x. ( r .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) -> A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
45 |
12 44
|
mpan9 |
|- ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) ) -> A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) |
46 |
|
oveq2 |
|- ( x = X -> ( w .+ x ) = ( w .+ X ) ) |
47 |
46
|
oveq2d |
|- ( x = X -> ( R .x. ( w .+ x ) ) = ( R .x. ( w .+ X ) ) ) |
48 |
|
oveq2 |
|- ( x = X -> ( R .x. x ) = ( R .x. X ) ) |
49 |
48
|
oveq2d |
|- ( x = X -> ( ( R .x. w ) .+ ( R .x. x ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) ) |
50 |
47 49
|
eqeq12d |
|- ( x = X -> ( ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) <-> ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) ) ) |
51 |
50
|
3anbi2d |
|- ( x = X -> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) <-> ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) ) ) |
52 |
51
|
anbi1d |
|- ( x = X -> ( ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) <-> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) ) ) |
53 |
|
oveq2 |
|- ( w = Y -> ( R .x. w ) = ( R .x. Y ) ) |
54 |
53
|
eleq1d |
|- ( w = Y -> ( ( R .x. w ) e. V <-> ( R .x. Y ) e. V ) ) |
55 |
|
oveq1 |
|- ( w = Y -> ( w .+ X ) = ( Y .+ X ) ) |
56 |
55
|
oveq2d |
|- ( w = Y -> ( R .x. ( w .+ X ) ) = ( R .x. ( Y .+ X ) ) ) |
57 |
53
|
oveq1d |
|- ( w = Y -> ( ( R .x. w ) .+ ( R .x. X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) ) |
58 |
56 57
|
eqeq12d |
|- ( w = Y -> ( ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) <-> ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) ) ) |
59 |
|
oveq2 |
|- ( w = Y -> ( ( Q .+^ R ) .x. w ) = ( ( Q .+^ R ) .x. Y ) ) |
60 |
|
oveq2 |
|- ( w = Y -> ( Q .x. w ) = ( Q .x. Y ) ) |
61 |
60 53
|
oveq12d |
|- ( w = Y -> ( ( Q .x. w ) .+ ( R .x. w ) ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) |
62 |
59 61
|
eqeq12d |
|- ( w = Y -> ( ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) <-> ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) ) |
63 |
54 58 62
|
3anbi123d |
|- ( w = Y -> ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) <-> ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) ) ) |
64 |
|
oveq2 |
|- ( w = Y -> ( ( Q .X. R ) .x. w ) = ( ( Q .X. R ) .x. Y ) ) |
65 |
53
|
oveq2d |
|- ( w = Y -> ( Q .x. ( R .x. w ) ) = ( Q .x. ( R .x. Y ) ) ) |
66 |
64 65
|
eqeq12d |
|- ( w = Y -> ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) <-> ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) ) ) |
67 |
|
oveq2 |
|- ( w = Y -> ( .1. .x. w ) = ( .1. .x. Y ) ) |
68 |
|
id |
|- ( w = Y -> w = Y ) |
69 |
67 68
|
eqeq12d |
|- ( w = Y -> ( ( .1. .x. w ) = w <-> ( .1. .x. Y ) = Y ) ) |
70 |
|
oveq2 |
|- ( w = Y -> ( O .x. w ) = ( O .x. Y ) ) |
71 |
70
|
eqeq1d |
|- ( w = Y -> ( ( O .x. w ) = .0. <-> ( O .x. Y ) = .0. ) ) |
72 |
66 69 71
|
3anbi123d |
|- ( w = Y -> ( ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) <-> ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y /\ ( O .x. Y ) = .0. ) ) ) |
73 |
63 72
|
anbi12d |
|- ( w = Y -> ( ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ X ) ) = ( ( R .x. w ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) <-> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y /\ ( O .x. Y ) = .0. ) ) ) ) |
74 |
52 73
|
rspc2v |
|- ( ( X e. V /\ Y e. V ) -> ( A. x e. V A. w e. V ( ( ( R .x. w ) e. V /\ ( R .x. ( w .+ x ) ) = ( ( R .x. w ) .+ ( R .x. x ) ) /\ ( ( Q .+^ R ) .x. w ) = ( ( Q .x. w ) .+ ( R .x. w ) ) ) /\ ( ( ( Q .X. R ) .x. w ) = ( Q .x. ( R .x. w ) ) /\ ( .1. .x. w ) = w /\ ( O .x. w ) = .0. ) ) -> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y /\ ( O .x. Y ) = .0. ) ) ) ) |
75 |
45 74
|
syl5com |
|- ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) ) -> ( ( X e. V /\ Y e. V ) -> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y /\ ( O .x. Y ) = .0. ) ) ) ) |
76 |
75
|
3impia |
|- ( ( W e. SLMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ Y e. V ) ) -> ( ( ( R .x. Y ) e. V /\ ( R .x. ( Y .+ X ) ) = ( ( R .x. Y ) .+ ( R .x. X ) ) /\ ( ( Q .+^ R ) .x. Y ) = ( ( Q .x. Y ) .+ ( R .x. Y ) ) ) /\ ( ( ( Q .X. R ) .x. Y ) = ( Q .x. ( R .x. Y ) ) /\ ( .1. .x. Y ) = Y /\ ( O .x. Y ) = .0. ) ) ) |