Step |
Hyp |
Ref |
Expression |
1 |
|
isslmd.v |
|
2 |
|
isslmd.a |
|
3 |
|
isslmd.s |
|
4 |
|
isslmd.0 |
|
5 |
|
isslmd.f |
|
6 |
|
isslmd.k |
|
7 |
|
isslmd.p |
|
8 |
|
isslmd.t |
|
9 |
|
isslmd.u |
|
10 |
|
isslmd.o |
|
11 |
1 2 3 4 5 6 7 8 9 10
|
isslmd |
|
12 |
11
|
simp3bi |
|
13 |
|
oveq1 |
|
14 |
13
|
oveq1d |
|
15 |
|
oveq1 |
|
16 |
15
|
oveq1d |
|
17 |
14 16
|
eqeq12d |
|
18 |
17
|
3anbi3d |
|
19 |
|
oveq1 |
|
20 |
19
|
oveq1d |
|
21 |
|
oveq1 |
|
22 |
20 21
|
eqeq12d |
|
23 |
22
|
3anbi1d |
|
24 |
18 23
|
anbi12d |
|
25 |
24
|
2ralbidv |
|
26 |
|
oveq1 |
|
27 |
26
|
eleq1d |
|
28 |
|
oveq1 |
|
29 |
|
oveq1 |
|
30 |
26 29
|
oveq12d |
|
31 |
28 30
|
eqeq12d |
|
32 |
|
oveq2 |
|
33 |
32
|
oveq1d |
|
34 |
26
|
oveq2d |
|
35 |
33 34
|
eqeq12d |
|
36 |
27 31 35
|
3anbi123d |
|
37 |
|
oveq2 |
|
38 |
37
|
oveq1d |
|
39 |
26
|
oveq2d |
|
40 |
38 39
|
eqeq12d |
|
41 |
40
|
3anbi1d |
|
42 |
36 41
|
anbi12d |
|
43 |
42
|
2ralbidv |
|
44 |
25 43
|
rspc2v |
|
45 |
12 44
|
mpan9 |
|
46 |
|
oveq2 |
|
47 |
46
|
oveq2d |
|
48 |
|
oveq2 |
|
49 |
48
|
oveq2d |
|
50 |
47 49
|
eqeq12d |
|
51 |
50
|
3anbi2d |
|
52 |
51
|
anbi1d |
|
53 |
|
oveq2 |
|
54 |
53
|
eleq1d |
|
55 |
|
oveq1 |
|
56 |
55
|
oveq2d |
|
57 |
53
|
oveq1d |
|
58 |
56 57
|
eqeq12d |
|
59 |
|
oveq2 |
|
60 |
|
oveq2 |
|
61 |
60 53
|
oveq12d |
|
62 |
59 61
|
eqeq12d |
|
63 |
54 58 62
|
3anbi123d |
|
64 |
|
oveq2 |
|
65 |
53
|
oveq2d |
|
66 |
64 65
|
eqeq12d |
|
67 |
|
oveq2 |
|
68 |
|
id |
|
69 |
67 68
|
eqeq12d |
|
70 |
|
oveq2 |
|
71 |
70
|
eqeq1d |
|
72 |
66 69 71
|
3anbi123d |
|
73 |
63 72
|
anbi12d |
|
74 |
52 73
|
rspc2v |
|
75 |
45 74
|
syl5com |
|
76 |
75
|
3impia |
|