Step |
Hyp |
Ref |
Expression |
1 |
|
isslmd.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isslmd.a |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
isslmd.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
isslmd.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
isslmd.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
6 |
|
isslmd.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
7 |
|
isslmd.p |
⊢ ⨣ = ( +g ‘ 𝐹 ) |
8 |
|
isslmd.t |
⊢ × = ( .r ‘ 𝐹 ) |
9 |
|
isslmd.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
10 |
|
isslmd.o |
⊢ 𝑂 = ( 0g ‘ 𝐹 ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
isslmd |
⊢ ( 𝑊 ∈ SLMod ↔ ( 𝑊 ∈ CMnd ∧ 𝐹 ∈ SRing ∧ ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) ) |
12 |
11
|
simp3bi |
⊢ ( 𝑊 ∈ SLMod → ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ⨣ 𝑟 ) = ( 𝑄 ⨣ 𝑟 ) ) |
14 |
13
|
oveq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) ) |
15 |
|
oveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 · 𝑤 ) = ( 𝑄 · 𝑤 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) |
17 |
14 16
|
eqeq12d |
⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) |
18 |
17
|
3anbi3d |
⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ↔ ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ) ) |
19 |
|
oveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 × 𝑟 ) = ( 𝑄 × 𝑟 ) ) |
20 |
19
|
oveq1d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( ( 𝑄 × 𝑟 ) · 𝑤 ) ) |
21 |
|
oveq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 · ( 𝑟 · 𝑤 ) ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ) |
22 |
20 21
|
eqeq12d |
⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ) ) |
23 |
22
|
3anbi1d |
⊢ ( 𝑞 = 𝑄 → ( ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ↔ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) |
24 |
18 23
|
anbi12d |
⊢ ( 𝑞 = 𝑄 → ( ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ↔ ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) ) |
25 |
24
|
2ralbidv |
⊢ ( 𝑞 = 𝑄 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) ) |
26 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 · 𝑤 ) = ( 𝑅 · 𝑤 ) ) |
27 |
26
|
eleq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ↔ ( 𝑅 · 𝑤 ) ∈ 𝑉 ) ) |
28 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( 𝑅 · ( 𝑤 + 𝑥 ) ) ) |
29 |
|
oveq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 · 𝑥 ) = ( 𝑅 · 𝑥 ) ) |
30 |
26 29
|
oveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ) |
31 |
28 30
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ↔ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ) ) |
32 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 ⨣ 𝑟 ) = ( 𝑄 ⨣ 𝑅 ) ) |
33 |
32
|
oveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) ) |
34 |
26
|
oveq2d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ) |
36 |
27 31 35
|
3anbi123d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ↔ ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ) ) |
37 |
|
oveq2 |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 × 𝑟 ) = ( 𝑄 × 𝑅 ) ) |
38 |
37
|
oveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( ( 𝑄 × 𝑅 ) · 𝑤 ) ) |
39 |
26
|
oveq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 · ( 𝑟 · 𝑤 ) ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ) |
40 |
38 39
|
eqeq12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ↔ ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ) ) |
41 |
40
|
3anbi1d |
⊢ ( 𝑟 = 𝑅 → ( ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ↔ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) |
42 |
36 41
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ↔ ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) ) |
43 |
42
|
2ralbidv |
⊢ ( 𝑟 = 𝑅 → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑟 ) · 𝑤 ) = ( 𝑄 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ↔ ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) ) |
44 |
25 43
|
rspc2v |
⊢ ( ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) → ( ∀ 𝑞 ∈ 𝐾 ∀ 𝑟 ∈ 𝐾 ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑟 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑟 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑟 · 𝑤 ) + ( 𝑟 · 𝑥 ) ) ∧ ( ( 𝑞 ⨣ 𝑟 ) · 𝑤 ) = ( ( 𝑞 · 𝑤 ) + ( 𝑟 · 𝑤 ) ) ) ∧ ( ( ( 𝑞 × 𝑟 ) · 𝑤 ) = ( 𝑞 · ( 𝑟 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) ) |
45 |
12 44
|
mpan9 |
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) → ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) |
46 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑤 + 𝑥 ) = ( 𝑤 + 𝑋 ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( 𝑅 · ( 𝑤 + 𝑋 ) ) ) |
48 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑅 · 𝑥 ) = ( 𝑅 · 𝑋 ) ) |
49 |
48
|
oveq2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ) |
50 |
47 49
|
eqeq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ↔ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ) ) |
51 |
50
|
3anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ↔ ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ) ) |
52 |
51
|
anbi1d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ↔ ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ) ) |
53 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( 𝑅 · 𝑤 ) = ( 𝑅 · 𝑌 ) ) |
54 |
53
|
eleq1d |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ↔ ( 𝑅 · 𝑌 ) ∈ 𝑉 ) ) |
55 |
|
oveq1 |
⊢ ( 𝑤 = 𝑌 → ( 𝑤 + 𝑋 ) = ( 𝑌 + 𝑋 ) ) |
56 |
55
|
oveq2d |
⊢ ( 𝑤 = 𝑌 → ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( 𝑅 · ( 𝑌 + 𝑋 ) ) ) |
57 |
53
|
oveq1d |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ) |
58 |
56 57
|
eqeq12d |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ↔ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ) ) |
59 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) ) |
60 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( 𝑄 · 𝑤 ) = ( 𝑄 · 𝑌 ) ) |
61 |
60 53
|
oveq12d |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) |
62 |
59 61
|
eqeq12d |
⊢ ( 𝑤 = 𝑌 → ( ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ↔ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ) |
63 |
54 58 62
|
3anbi123d |
⊢ ( 𝑤 = 𝑌 → ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ↔ ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ) ) |
64 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( ( 𝑄 × 𝑅 ) · 𝑌 ) ) |
65 |
53
|
oveq2d |
⊢ ( 𝑤 = 𝑌 → ( 𝑄 · ( 𝑅 · 𝑤 ) ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ) |
66 |
64 65
|
eqeq12d |
⊢ ( 𝑤 = 𝑌 → ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ↔ ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ) ) |
67 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( 1 · 𝑤 ) = ( 1 · 𝑌 ) ) |
68 |
|
id |
⊢ ( 𝑤 = 𝑌 → 𝑤 = 𝑌 ) |
69 |
67 68
|
eqeq12d |
⊢ ( 𝑤 = 𝑌 → ( ( 1 · 𝑤 ) = 𝑤 ↔ ( 1 · 𝑌 ) = 𝑌 ) ) |
70 |
|
oveq2 |
⊢ ( 𝑤 = 𝑌 → ( 𝑂 · 𝑤 ) = ( 𝑂 · 𝑌 ) ) |
71 |
70
|
eqeq1d |
⊢ ( 𝑤 = 𝑌 → ( ( 𝑂 · 𝑤 ) = 0 ↔ ( 𝑂 · 𝑌 ) = 0 ) ) |
72 |
66 69 71
|
3anbi123d |
⊢ ( 𝑤 = 𝑌 → ( ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ↔ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ∧ ( 𝑂 · 𝑌 ) = 0 ) ) ) |
73 |
63 72
|
anbi12d |
⊢ ( 𝑤 = 𝑌 → ( ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑋 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) ↔ ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ∧ ( 𝑂 · 𝑌 ) = 0 ) ) ) ) |
74 |
52 73
|
rspc2v |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ 𝑉 ∀ 𝑤 ∈ 𝑉 ( ( ( 𝑅 · 𝑤 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑤 + 𝑥 ) ) = ( ( 𝑅 · 𝑤 ) + ( 𝑅 · 𝑥 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑤 ) = ( ( 𝑄 · 𝑤 ) + ( 𝑅 · 𝑤 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑤 ) = ( 𝑄 · ( 𝑅 · 𝑤 ) ) ∧ ( 1 · 𝑤 ) = 𝑤 ∧ ( 𝑂 · 𝑤 ) = 0 ) ) → ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ∧ ( 𝑂 · 𝑌 ) = 0 ) ) ) ) |
75 |
45 74
|
syl5com |
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ) → ( ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ∧ ( 𝑂 · 𝑌 ) = 0 ) ) ) ) |
76 |
75
|
3impia |
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 𝑄 ∈ 𝐾 ∧ 𝑅 ∈ 𝐾 ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( ( ( 𝑅 · 𝑌 ) ∈ 𝑉 ∧ ( 𝑅 · ( 𝑌 + 𝑋 ) ) = ( ( 𝑅 · 𝑌 ) + ( 𝑅 · 𝑋 ) ) ∧ ( ( 𝑄 ⨣ 𝑅 ) · 𝑌 ) = ( ( 𝑄 · 𝑌 ) + ( 𝑅 · 𝑌 ) ) ) ∧ ( ( ( 𝑄 × 𝑅 ) · 𝑌 ) = ( 𝑄 · ( 𝑅 · 𝑌 ) ) ∧ ( 1 · 𝑌 ) = 𝑌 ∧ ( 𝑂 · 𝑌 ) = 0 ) ) ) |