| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodcmn | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  CMnd ) | 
						
							| 2 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 | 2 | lmodring | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  Ring ) | 
						
							| 4 |  | ringsrg | ⊢ ( ( Scalar ‘ 𝑊 )  ∈  Ring  →  ( Scalar ‘ 𝑊 )  ∈  SRing ) | 
						
							| 5 | 3 4 | syl | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  SRing ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 8 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) )  =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 11 |  | eqid | ⊢ ( .r ‘ ( Scalar ‘ 𝑊 ) )  =  ( .r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 12 |  | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) )  =  ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 13 | 6 7 8 2 9 10 11 12 | islmod | ⊢ ( 𝑊  ∈  LMod  ↔  ( 𝑊  ∈  Grp  ∧  ( Scalar ‘ 𝑊 )  ∈  Ring  ∧  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) ) ) ) | 
						
							| 14 | 13 | simp3bi | ⊢ ( 𝑊  ∈  LMod  →  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) ) ) | 
						
							| 15 | 14 | r19.21bi | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) ) ) | 
						
							| 16 | 15 | r19.21bi | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) ) ) | 
						
							| 17 | 16 | r19.21bi | ⊢ ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) ) ) | 
						
							| 18 | 17 | r19.21bi | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) ) ) | 
						
							| 19 | 18 | simpld | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) ) ) | 
						
							| 20 | 18 | simprd | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) ) | 
						
							| 21 | 20 | simpld | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) ) | 
						
							| 22 | 20 | simprd | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤 ) | 
						
							| 23 |  | simp-4l | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  𝑊  ∈  LMod ) | 
						
							| 24 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 25 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 26 | 6 2 8 24 25 | lmod0vs | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 27 | 23 26 | sylancom | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 28 | 21 22 27 | 3jca | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤  ∧  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 29 | 19 28 | jca | ⊢ ( ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  ∧  𝑤  ∈  ( Base ‘ 𝑊 ) )  →  ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤  ∧  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑥  ∈  ( Base ‘ 𝑊 ) )  →  ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤  ∧  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 31 | 30 | ralrimiva | ⊢ ( ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  ∧  𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤  ∧  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 31 | ralrimiva | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤  ∧  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 33 | 32 | ralrimiva | ⊢ ( 𝑊  ∈  LMod  →  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤  ∧  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 34 | 6 7 8 25 2 9 10 11 12 24 | isslmd | ⊢ ( 𝑊  ∈  SLMod  ↔  ( 𝑊  ∈  CMnd  ∧  ( Scalar ‘ 𝑊 )  ∈  SRing  ∧  ∀ 𝑞  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑟  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑤  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑟 (  ·𝑠  ‘ 𝑊 ) ( 𝑤 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑞 ( +g ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( ( 𝑞 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ( +g ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) ) )  ∧  ( ( ( 𝑞 ( .r ‘ ( Scalar ‘ 𝑊 ) ) 𝑟 ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 𝑞 (  ·𝑠  ‘ 𝑊 ) ( 𝑟 (  ·𝑠  ‘ 𝑊 ) 𝑤 ) )  ∧  ( ( 1r ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  𝑤  ∧  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) (  ·𝑠  ‘ 𝑊 ) 𝑤 )  =  ( 0g ‘ 𝑊 ) ) ) ) ) | 
						
							| 35 | 1 5 33 34 | syl3anbrc | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  SLMod ) |