| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmodcmn |  |-  ( W e. LMod -> W e. CMnd ) | 
						
							| 2 |  | eqid |  |-  ( Scalar ` W ) = ( Scalar ` W ) | 
						
							| 3 | 2 | lmodring |  |-  ( W e. LMod -> ( Scalar ` W ) e. Ring ) | 
						
							| 4 |  | ringsrg |  |-  ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. SRing ) | 
						
							| 5 | 3 4 | syl |  |-  ( W e. LMod -> ( Scalar ` W ) e. SRing ) | 
						
							| 6 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 7 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 8 |  | eqid |  |-  ( .s ` W ) = ( .s ` W ) | 
						
							| 9 |  | eqid |  |-  ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) | 
						
							| 10 |  | eqid |  |-  ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) | 
						
							| 11 |  | eqid |  |-  ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) | 
						
							| 12 |  | eqid |  |-  ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) | 
						
							| 13 | 6 7 8 2 9 10 11 12 | islmod |  |-  ( W e. LMod <-> ( W e. Grp /\ ( Scalar ` W ) e. Ring /\ A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) | 
						
							| 14 | 13 | simp3bi |  |-  ( W e. LMod -> A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) | 
						
							| 15 | 14 | r19.21bi |  |-  ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) -> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) | 
						
							| 16 | 15 | r19.21bi |  |-  ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) -> A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) | 
						
							| 17 | 16 | r19.21bi |  |-  ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) -> A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) | 
						
							| 18 | 17 | r19.21bi |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) | 
						
							| 19 | 18 | simpld |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) ) | 
						
							| 20 | 18 | simprd |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) | 
						
							| 21 | 20 | simpld |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) ) | 
						
							| 22 | 20 | simprd |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) | 
						
							| 23 |  | simp-4l |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> W e. LMod ) | 
						
							| 24 |  | eqid |  |-  ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) | 
						
							| 25 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 26 | 6 2 8 24 25 | lmod0vs |  |-  ( ( W e. LMod /\ w e. ( Base ` W ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) | 
						
							| 27 | 23 26 | sylancom |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) | 
						
							| 28 | 21 22 27 | 3jca |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) | 
						
							| 29 | 19 28 | jca |  |-  ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) | 
						
							| 30 | 29 | ralrimiva |  |-  ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) -> A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) | 
						
							| 31 | 30 | ralrimiva |  |-  ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) -> A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) | 
						
							| 32 | 31 | ralrimiva |  |-  ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) -> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) | 
						
							| 33 | 32 | ralrimiva |  |-  ( W e. LMod -> A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) | 
						
							| 34 | 6 7 8 25 2 9 10 11 12 24 | isslmd |  |-  ( W e. SLMod <-> ( W e. CMnd /\ ( Scalar ` W ) e. SRing /\ A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) ) | 
						
							| 35 | 1 5 33 34 | syl3anbrc |  |-  ( W e. LMod -> W e. SLMod ) |