Step |
Hyp |
Ref |
Expression |
1 |
|
lmodcmn |
|- ( W e. LMod -> W e. CMnd ) |
2 |
|
eqid |
|- ( Scalar ` W ) = ( Scalar ` W ) |
3 |
2
|
lmodring |
|- ( W e. LMod -> ( Scalar ` W ) e. Ring ) |
4 |
|
ringsrg |
|- ( ( Scalar ` W ) e. Ring -> ( Scalar ` W ) e. SRing ) |
5 |
3 4
|
syl |
|- ( W e. LMod -> ( Scalar ` W ) e. SRing ) |
6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
7 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
8 |
|
eqid |
|- ( .s ` W ) = ( .s ` W ) |
9 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
10 |
|
eqid |
|- ( +g ` ( Scalar ` W ) ) = ( +g ` ( Scalar ` W ) ) |
11 |
|
eqid |
|- ( .r ` ( Scalar ` W ) ) = ( .r ` ( Scalar ` W ) ) |
12 |
|
eqid |
|- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
13 |
6 7 8 2 9 10 11 12
|
islmod |
|- ( W e. LMod <-> ( W e. Grp /\ ( Scalar ` W ) e. Ring /\ A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) ) |
14 |
13
|
simp3bi |
|- ( W e. LMod -> A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
15 |
14
|
r19.21bi |
|- ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) -> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
16 |
15
|
r19.21bi |
|- ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) -> A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
17 |
16
|
r19.21bi |
|- ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) -> A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
18 |
17
|
r19.21bi |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) ) |
19 |
18
|
simpld |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) ) |
20 |
18
|
simprd |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) ) |
21 |
20
|
simpld |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) ) |
22 |
20
|
simprd |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w ) |
23 |
|
simp-4l |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> W e. LMod ) |
24 |
|
eqid |
|- ( 0g ` ( Scalar ` W ) ) = ( 0g ` ( Scalar ` W ) ) |
25 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
26 |
6 2 8 24 25
|
lmod0vs |
|- ( ( W e. LMod /\ w e. ( Base ` W ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) |
27 |
23 26
|
sylancom |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) |
28 |
21 22 27
|
3jca |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) |
29 |
19 28
|
jca |
|- ( ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) /\ w e. ( Base ` W ) ) -> ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) |
30 |
29
|
ralrimiva |
|- ( ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) /\ x e. ( Base ` W ) ) -> A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) |
31 |
30
|
ralrimiva |
|- ( ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) /\ r e. ( Base ` ( Scalar ` W ) ) ) -> A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) |
32 |
31
|
ralrimiva |
|- ( ( W e. LMod /\ q e. ( Base ` ( Scalar ` W ) ) ) -> A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) |
33 |
32
|
ralrimiva |
|- ( W e. LMod -> A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) |
34 |
6 7 8 25 2 9 10 11 12 24
|
isslmd |
|- ( W e. SLMod <-> ( W e. CMnd /\ ( Scalar ` W ) e. SRing /\ A. q e. ( Base ` ( Scalar ` W ) ) A. r e. ( Base ` ( Scalar ` W ) ) A. x e. ( Base ` W ) A. w e. ( Base ` W ) ( ( ( r ( .s ` W ) w ) e. ( Base ` W ) /\ ( r ( .s ` W ) ( w ( +g ` W ) x ) ) = ( ( r ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) x ) ) /\ ( ( q ( +g ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( ( q ( .s ` W ) w ) ( +g ` W ) ( r ( .s ` W ) w ) ) ) /\ ( ( ( q ( .r ` ( Scalar ` W ) ) r ) ( .s ` W ) w ) = ( q ( .s ` W ) ( r ( .s ` W ) w ) ) /\ ( ( 1r ` ( Scalar ` W ) ) ( .s ` W ) w ) = w /\ ( ( 0g ` ( Scalar ` W ) ) ( .s ` W ) w ) = ( 0g ` W ) ) ) ) ) |
35 |
1 5 33 34
|
syl3anbrc |
|- ( W e. LMod -> W e. SLMod ) |