| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdsrg.1 | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ (  ·𝑠  ‘ 𝑊 )  =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 7 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 8 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 9 |  | eqid | ⊢ ( 1r ‘ 𝐹 )  =  ( 1r ‘ 𝐹 ) | 
						
							| 10 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 11 | 2 3 4 5 1 6 7 8 9 10 | isslmd | ⊢ ( 𝑊  ∈  SLMod  ↔  ( 𝑊  ∈  CMnd  ∧  𝐹  ∈  SRing  ∧  ∀ 𝑤  ∈  ( Base ‘ 𝐹 ) ∀ 𝑧  ∈  ( Base ‘ 𝐹 ) ∀ 𝑥  ∈  ( Base ‘ 𝑊 ) ∀ 𝑦  ∈  ( Base ‘ 𝑊 ) ( ( ( 𝑧 (  ·𝑠  ‘ 𝑊 ) 𝑦 )  ∈  ( Base ‘ 𝑊 )  ∧  ( 𝑧 (  ·𝑠  ‘ 𝑊 ) ( 𝑦 ( +g ‘ 𝑊 ) 𝑥 ) )  =  ( ( 𝑧 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑧 (  ·𝑠  ‘ 𝑊 ) 𝑥 ) )  ∧  ( ( 𝑤 ( +g ‘ 𝐹 ) 𝑧 ) (  ·𝑠  ‘ 𝑊 ) 𝑦 )  =  ( ( 𝑤 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ( +g ‘ 𝑊 ) ( 𝑧 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) ) )  ∧  ( ( ( 𝑤 ( .r ‘ 𝐹 ) 𝑧 ) (  ·𝑠  ‘ 𝑊 ) 𝑦 )  =  ( 𝑤 (  ·𝑠  ‘ 𝑊 ) ( 𝑧 (  ·𝑠  ‘ 𝑊 ) 𝑦 ) )  ∧  ( ( 1r ‘ 𝐹 ) (  ·𝑠  ‘ 𝑊 ) 𝑦 )  =  𝑦  ∧  ( ( 0g ‘ 𝐹 ) (  ·𝑠  ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ 𝑊 ) ) ) ) ) | 
						
							| 12 | 11 | simp2bi | ⊢ ( 𝑊  ∈  SLMod  →  𝐹  ∈  SRing ) |