Metamath Proof Explorer
Description: The base set of a semimodule is nonempty. (Contributed by Thierry
Arnoux, 1-Apr-2018) (Proof shortened by AV, 10-Jan-2023)
|
|
Ref |
Expression |
|
Hypothesis |
slmdbn0.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
|
Assertion |
slmdbn0 |
⊢ ( 𝑊 ∈ SLMod → 𝐵 ≠ ∅ ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slmdbn0.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
slmdmnd |
⊢ ( 𝑊 ∈ SLMod → 𝑊 ∈ Mnd ) |
| 3 |
1
|
mndbn0 |
⊢ ( 𝑊 ∈ Mnd → 𝐵 ≠ ∅ ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑊 ∈ SLMod → 𝐵 ≠ ∅ ) |