Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | slmdacl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
slmdacl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
slmdacl.p | ⊢ + = ( +g ‘ 𝐹 ) | ||
Assertion | slmdacl | ⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdacl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
2 | slmdacl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
3 | slmdacl.p | ⊢ + = ( +g ‘ 𝐹 ) | |
4 | 1 | slmdsrg | ⊢ ( 𝑊 ∈ SLMod → 𝐹 ∈ SRing ) |
5 | srgmnd | ⊢ ( 𝐹 ∈ SRing → 𝐹 ∈ Mnd ) | |
6 | 4 5 | syl | ⊢ ( 𝑊 ∈ SLMod → 𝐹 ∈ Mnd ) |
7 | 2 3 | mndcl | ⊢ ( ( 𝐹 ∈ Mnd ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |
8 | 6 7 | syl3an1 | ⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |