Metamath Proof Explorer


Theorem slmdacl

Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdacl.f 𝐹 = ( Scalar ‘ 𝑊 )
slmdacl.k 𝐾 = ( Base ‘ 𝐹 )
slmdacl.p + = ( +g𝐹 )
Assertion slmdacl ( ( 𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 slmdacl.f 𝐹 = ( Scalar ‘ 𝑊 )
2 slmdacl.k 𝐾 = ( Base ‘ 𝐹 )
3 slmdacl.p + = ( +g𝐹 )
4 1 slmdsrg ( 𝑊 ∈ SLMod → 𝐹 ∈ SRing )
5 srgmnd ( 𝐹 ∈ SRing → 𝐹 ∈ Mnd )
6 4 5 syl ( 𝑊 ∈ SLMod → 𝐹 ∈ Mnd )
7 2 3 mndcl ( ( 𝐹 ∈ Mnd ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 )
8 6 7 syl3an1 ( ( 𝑊 ∈ SLMod ∧ 𝑋𝐾𝑌𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 )