Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slmdacl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| slmdacl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| slmdacl.p | ⊢ + = ( +g ‘ 𝐹 ) | ||
| Assertion | slmdacl | ⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slmdacl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | slmdacl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | slmdacl.p | ⊢ + = ( +g ‘ 𝐹 ) | |
| 4 | 1 | slmdsrg | ⊢ ( 𝑊 ∈ SLMod → 𝐹 ∈ SRing ) | 
| 5 | srgmnd | ⊢ ( 𝐹 ∈ SRing → 𝐹 ∈ Mnd ) | |
| 6 | 4 5 | syl | ⊢ ( 𝑊 ∈ SLMod → 𝐹 ∈ Mnd ) | 
| 7 | 2 3 | mndcl | ⊢ ( ( 𝐹 ∈ Mnd ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) | 
| 8 | 6 7 | syl3an1 | ⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 + 𝑌 ) ∈ 𝐾 ) |