Metamath Proof Explorer


Theorem slmdacl

Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdacl.f
|- F = ( Scalar ` W )
slmdacl.k
|- K = ( Base ` F )
slmdacl.p
|- .+ = ( +g ` F )
Assertion slmdacl
|- ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K )

Proof

Step Hyp Ref Expression
1 slmdacl.f
 |-  F = ( Scalar ` W )
2 slmdacl.k
 |-  K = ( Base ` F )
3 slmdacl.p
 |-  .+ = ( +g ` F )
4 1 slmdsrg
 |-  ( W e. SLMod -> F e. SRing )
5 srgmnd
 |-  ( F e. SRing -> F e. Mnd )
6 4 5 syl
 |-  ( W e. SLMod -> F e. Mnd )
7 2 3 mndcl
 |-  ( ( F e. Mnd /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K )
8 6 7 syl3an1
 |-  ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K )