Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | slmdacl.f | |- F = ( Scalar ` W ) |
|
slmdacl.k | |- K = ( Base ` F ) |
||
slmdacl.p | |- .+ = ( +g ` F ) |
||
Assertion | slmdacl | |- ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | slmdacl.f | |- F = ( Scalar ` W ) |
|
2 | slmdacl.k | |- K = ( Base ` F ) |
|
3 | slmdacl.p | |- .+ = ( +g ` F ) |
|
4 | 1 | slmdsrg | |- ( W e. SLMod -> F e. SRing ) |
5 | srgmnd | |- ( F e. SRing -> F e. Mnd ) |
|
6 | 4 5 | syl | |- ( W e. SLMod -> F e. Mnd ) |
7 | 2 3 | mndcl | |- ( ( F e. Mnd /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |
8 | 6 7 | syl3an1 | |- ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |