Description: Closure of ring addition for a semimodule. (Contributed by Thierry Arnoux, 1-Apr-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | slmdacl.f | |- F = ( Scalar ` W ) | |
| slmdacl.k | |- K = ( Base ` F ) | ||
| slmdacl.p | |- .+ = ( +g ` F ) | ||
| Assertion | slmdacl | |- ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | slmdacl.f | |- F = ( Scalar ` W ) | |
| 2 | slmdacl.k | |- K = ( Base ` F ) | |
| 3 | slmdacl.p | |- .+ = ( +g ` F ) | |
| 4 | 1 | slmdsrg | |- ( W e. SLMod -> F e. SRing ) | 
| 5 | srgmnd | |- ( F e. SRing -> F e. Mnd ) | |
| 6 | 4 5 | syl | |- ( W e. SLMod -> F e. Mnd ) | 
| 7 | 2 3 | mndcl | |- ( ( F e. Mnd /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) | 
| 8 | 6 7 | syl3an1 | |- ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .+ Y ) e. K ) |