Metamath Proof Explorer


Theorem slmdmcl

Description: Closure of ring multiplication for a semimodule. (Contributed by NM, 14-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdmcl.f
|- F = ( Scalar ` W )
slmdmcl.k
|- K = ( Base ` F )
slmdmcl.t
|- .x. = ( .r ` F )
Assertion slmdmcl
|- ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .x. Y ) e. K )

Proof

Step Hyp Ref Expression
1 slmdmcl.f
 |-  F = ( Scalar ` W )
2 slmdmcl.k
 |-  K = ( Base ` F )
3 slmdmcl.t
 |-  .x. = ( .r ` F )
4 1 slmdsrg
 |-  ( W e. SLMod -> F e. SRing )
5 2 3 srgcl
 |-  ( ( F e. SRing /\ X e. K /\ Y e. K ) -> ( X .x. Y ) e. K )
6 4 5 syl3an1
 |-  ( ( W e. SLMod /\ X e. K /\ Y e. K ) -> ( X .x. Y ) e. K )