Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Semiring left modules
slmdmcl
Metamath Proof Explorer
Description: Closure of ring multiplication for a semimodule. (Contributed by NM , 14-Jan-2014) (Revised by Mario Carneiro , 19-Jun-2014) (Revised by Thierry Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
slmdmcl.f
⊢ 𝐹 = ( Scalar ‘ 𝑊 )
slmdmcl.k
⊢ 𝐾 = ( Base ‘ 𝐹 )
slmdmcl.t
⊢ · = ( .r ‘ 𝐹 )
Assertion
slmdmcl
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 )
Proof
Step
Hyp
Ref
Expression
1
slmdmcl.f
⊢ 𝐹 = ( Scalar ‘ 𝑊 )
2
slmdmcl.k
⊢ 𝐾 = ( Base ‘ 𝐹 )
3
slmdmcl.t
⊢ · = ( .r ‘ 𝐹 )
4
1
slmdsrg
⊢ ( 𝑊 ∈ SLMod → 𝐹 ∈ SRing )
5
2 3
srgcl
⊢ ( ( 𝐹 ∈ SRing ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 )
6
4 5
syl3an1
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐾 ) → ( 𝑋 · 𝑌 ) ∈ 𝐾 )