Metamath Proof Explorer
		
		
		
		Description:  The set of scalars in a semimodule is nonempty.  (Contributed by Thierry
       Arnoux, 1-Apr-2018)  (Proof shortened by AV, 10-Jan-2023)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | slmdsn0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
					
						|  |  | slmdsn0.b | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
				
					|  | Assertion | slmdsn0 | ⊢  ( 𝑊  ∈  SLMod  →  𝐵  ≠  ∅ ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdsn0.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | slmdsn0.b | ⊢ 𝐵  =  ( Base ‘ 𝐹 ) | 
						
							| 3 | 1 | slmdsrg | ⊢ ( 𝑊  ∈  SLMod  →  𝐹  ∈  SRing ) | 
						
							| 4 |  | srgmnd | ⊢ ( 𝐹  ∈  SRing  →  𝐹  ∈  Mnd ) | 
						
							| 5 | 2 | mndbn0 | ⊢ ( 𝐹  ∈  Mnd  →  𝐵  ≠  ∅ ) | 
						
							| 6 | 3 4 5 | 3syl | ⊢ ( 𝑊  ∈  SLMod  →  𝐵  ≠  ∅ ) |