Metamath Proof Explorer
Description: The set of scalars in a semimodule is nonempty. (Contributed by Thierry
Arnoux, 1-Apr-2018) (Proof shortened by AV, 10-Jan-2023)
|
|
Ref |
Expression |
|
Hypotheses |
slmdsn0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
|
|
slmdsn0.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
|
Assertion |
slmdsn0 |
⊢ ( 𝑊 ∈ SLMod → 𝐵 ≠ ∅ ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
slmdsn0.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
slmdsn0.b |
⊢ 𝐵 = ( Base ‘ 𝐹 ) |
3 |
1
|
slmdsrg |
⊢ ( 𝑊 ∈ SLMod → 𝐹 ∈ SRing ) |
4 |
|
srgmnd |
⊢ ( 𝐹 ∈ SRing → 𝐹 ∈ Mnd ) |
5 |
2
|
mndbn0 |
⊢ ( 𝐹 ∈ Mnd → 𝐵 ≠ ∅ ) |
6 |
3 4 5
|
3syl |
⊢ ( 𝑊 ∈ SLMod → 𝐵 ≠ ∅ ) |