Metamath Proof Explorer


Theorem slmdvacl

Description: Closure of vector addition for a semiring left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvacl.v 𝑉 = ( Base ‘ 𝑊 )
slmdvacl.a + = ( +g𝑊 )
Assertion slmdvacl ( ( 𝑊 ∈ SLMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )

Proof

Step Hyp Ref Expression
1 slmdvacl.v 𝑉 = ( Base ‘ 𝑊 )
2 slmdvacl.a + = ( +g𝑊 )
3 slmdmnd ( 𝑊 ∈ SLMod → 𝑊 ∈ Mnd )
4 1 2 mndcl ( ( 𝑊 ∈ Mnd ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
5 3 4 syl3an1 ( ( 𝑊 ∈ SLMod ∧ 𝑋𝑉𝑌𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )