Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Semiring left modules
slmdvacl
Metamath Proof Explorer
Description: Closure of vector addition for a semiring left module. (Contributed by NM , 8-Dec-2013) (Revised by Mario Carneiro , 19-Jun-2014) (Revised by Thierry Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
slmdvacl.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
slmdvacl.a
⊢ + = ( +g ‘ 𝑊 )
Assertion
slmdvacl
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
Proof
Step
Hyp
Ref
Expression
1
slmdvacl.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
2
slmdvacl.a
⊢ + = ( +g ‘ 𝑊 )
3
slmdmnd
⊢ ( 𝑊 ∈ SLMod → 𝑊 ∈ Mnd )
4
1 2
mndcl
⊢ ( ( 𝑊 ∈ Mnd ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )
5
3 4
syl3an1
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 + 𝑌 ) ∈ 𝑉 )