Metamath Proof Explorer


Theorem slmdvacl

Description: Closure of vector addition for a semiring left module. (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvacl.v
|- V = ( Base ` W )
slmdvacl.a
|- .+ = ( +g ` W )
Assertion slmdvacl
|- ( ( W e. SLMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V )

Proof

Step Hyp Ref Expression
1 slmdvacl.v
 |-  V = ( Base ` W )
2 slmdvacl.a
 |-  .+ = ( +g ` W )
3 slmdmnd
 |-  ( W e. SLMod -> W e. Mnd )
4 1 2 mndcl
 |-  ( ( W e. Mnd /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V )
5 3 4 syl3an1
 |-  ( ( W e. SLMod /\ X e. V /\ Y e. V ) -> ( X .+ Y ) e. V )