Metamath Proof Explorer


Theorem slmdass

Description: Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvacl.v
|- V = ( Base ` W )
slmdvacl.a
|- .+ = ( +g ` W )
Assertion slmdass
|- ( ( W e. SLMod /\ ( X e. V /\ Y e. V /\ Z e. V ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )

Proof

Step Hyp Ref Expression
1 slmdvacl.v
 |-  V = ( Base ` W )
2 slmdvacl.a
 |-  .+ = ( +g ` W )
3 slmdmnd
 |-  ( W e. SLMod -> W e. Mnd )
4 1 2 mndass
 |-  ( ( W e. Mnd /\ ( X e. V /\ Y e. V /\ Z e. V ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )
5 3 4 sylan
 |-  ( ( W e. SLMod /\ ( X e. V /\ Y e. V /\ Z e. V ) ) -> ( ( X .+ Y ) .+ Z ) = ( X .+ ( Y .+ Z ) ) )