Step |
Hyp |
Ref |
Expression |
1 |
|
slmdvscl.v |
|- V = ( Base ` W ) |
2 |
|
slmdvscl.f |
|- F = ( Scalar ` W ) |
3 |
|
slmdvscl.s |
|- .x. = ( .s ` W ) |
4 |
|
slmdvscl.k |
|- K = ( Base ` F ) |
5 |
|
biid |
|- ( W e. SLMod <-> W e. SLMod ) |
6 |
|
pm4.24 |
|- ( R e. K <-> ( R e. K /\ R e. K ) ) |
7 |
|
pm4.24 |
|- ( X e. V <-> ( X e. V /\ X e. V ) ) |
8 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
9 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
10 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
11 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
12 |
|
eqid |
|- ( 1r ` F ) = ( 1r ` F ) |
13 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
14 |
1 8 3 9 2 4 10 11 12 13
|
slmdlema |
|- ( ( W e. SLMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) ) /\ ( ( ( R ( .r ` F ) R ) .x. X ) = ( R .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X /\ ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) ) ) |
15 |
14
|
simpld |
|- ( ( W e. SLMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) ) ) |
16 |
15
|
simp1d |
|- ( ( W e. SLMod /\ ( R e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( R .x. X ) e. V ) |
17 |
5 6 7 16
|
syl3anb |
|- ( ( W e. SLMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V ) |