Metamath Proof Explorer


Theorem slmdvscl

Description: Closure of scalar product for a semiring left module. ( hvmulcl analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvscl.v V=BaseW
slmdvscl.f F=ScalarW
slmdvscl.s ·˙=W
slmdvscl.k K=BaseF
Assertion slmdvscl WSLModRKXVR·˙XV

Proof

Step Hyp Ref Expression
1 slmdvscl.v V=BaseW
2 slmdvscl.f F=ScalarW
3 slmdvscl.s ·˙=W
4 slmdvscl.k K=BaseF
5 biid WSLModWSLMod
6 pm4.24 RKRKRK
7 pm4.24 XVXVXV
8 eqid +W=+W
9 eqid 0W=0W
10 eqid +F=+F
11 eqid F=F
12 eqid 1F=1F
13 eqid 0F=0F
14 1 8 3 9 2 4 10 11 12 13 slmdlema WSLModRKRKXVXVR·˙XVR·˙X+WX=R·˙X+WR·˙XR+FR·˙X=R·˙X+WR·˙XRFR·˙X=R·˙R·˙X1F·˙X=X0F·˙X=0W
15 14 simpld WSLModRKRKXVXVR·˙XVR·˙X+WX=R·˙X+WR·˙XR+FR·˙X=R·˙X+WR·˙X
16 15 simp1d WSLModRKRKXVXVR·˙XV
17 5 6 7 16 syl3anb WSLModRKXVR·˙XV