Metamath Proof Explorer


Theorem slmdass

Description: Semiring left module vector sum is associative. (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvacl.v 𝑉 = ( Base ‘ 𝑊 )
slmdvacl.a + = ( +g𝑊 )
Assertion slmdass ( ( 𝑊 ∈ SLMod ∧ ( 𝑋𝑉𝑌𝑉𝑍𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 slmdvacl.v 𝑉 = ( Base ‘ 𝑊 )
2 slmdvacl.a + = ( +g𝑊 )
3 slmdmnd ( 𝑊 ∈ SLMod → 𝑊 ∈ Mnd )
4 1 2 mndass ( ( 𝑊 ∈ Mnd ∧ ( 𝑋𝑉𝑌𝑉𝑍𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )
5 3 4 sylan ( ( 𝑊 ∈ SLMod ∧ ( 𝑋𝑉𝑌𝑉𝑍𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )