Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Semiring left modules
slmdass
Metamath Proof Explorer
Description: Semiring left module vector sum is associative. (Contributed by NM , 10-Jan-2014) (Revised by Mario Carneiro , 19-Jun-2014) (Revised by Thierry Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
slmdvacl.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
slmdvacl.a
⊢ + = ( +g ‘ 𝑊 )
Assertion
slmdass
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )
Proof
Step
Hyp
Ref
Expression
1
slmdvacl.v
⊢ 𝑉 = ( Base ‘ 𝑊 )
2
slmdvacl.a
⊢ + = ( +g ‘ 𝑊 )
3
slmdmnd
⊢ ( 𝑊 ∈ SLMod → 𝑊 ∈ Mnd )
4
1 2
mndass
⊢ ( ( 𝑊 ∈ Mnd ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )
5
3 4
sylan
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉 ) ) → ( ( 𝑋 + 𝑌 ) + 𝑍 ) = ( 𝑋 + ( 𝑌 + 𝑍 ) ) )